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Abstract. A compact convex subset K of a topological linear space is called a Keller
compactum if it is affinely homeomorphic to an infinite-dimensional compact convex

subset of the Hilbert space `2. Let G be a compact topological group acting affinely
on a Keller compactum K and let 2K denote the hyperspace of all non-empty compact

subsets of K endowed with the Hausdorff metric topology and the induced action of

G. Further, let cc(K) denote the subspace of 2K consisting of all compact convex
subsets of K. In a particular case, the main result of the paper asserts that if K is

centrally symmetric, then the orbit spaces 2K/G and cc(K)/G are homeomorphic to

the Hilbert cube.

1. Introduction

By a Keller compactum we mean a compact convex subset of a topological linear
space that is affinely homeomorphic to an infinite-dimensional compact convex subset
of the real separable Hilbert space `2 (see [8, Ch. III, § 3]). It is well known that every
infinite-dimensional compact convex subset of an arbitrary Fréchet space (in particular,
of a Banach space) is a Keller compactum (see [8, Ch. III, §3, Proposition 3.1]).

The Hilbert cube Q is the simplest but most important example of a Keller com-
pactum. It is the compact convex subset [−1, 1]∞ =

∏∞
n=1[−1, 1]n of the Fréchet space

R∞, whose product topology is induced by the following standard metric:

ρ(x, y) =

∞∑
n=1

2−n|xn − yn|, x = (xn), y = (yn) ∈ Q.

It is well-known that the Hilbert cube Q is affinely homeomorphic to the compact convex
subset

H = {x ∈ `2 | |xn| ≤ 1/n, n ∈ N}
of the Hilbert space `2, known under the name of a fundamental parallelopiped of `2 or
the Hilbert brick (see [13, Ch. 3, §11]).

In 1931, O. H. Keller [11] proved that every infinite-dimensional compact convex set in
`2 is homeomorphic to the Hilbert cube Q, and in 1955, V. L. Klee Jr. [12] extended this
result to arbitrary normed linear spaces. Nevertheless, not all Keller compacta are affinely
homeomorphic to each other [8, Ch. V, §4]. Thus, besides the topological properties of Q,
a Keller compactum carries an affine-topological structure. Furthermore, a continuous
action of a topological group on a Keller compactum K broadens the structure of K
to a geometric-topological one. In this sense, we study the affine-topological structure
induced by a Keller compactum K in the hyperspaces 2K and cc(K) (which are defined
below), as well as the topological structure of certain orbit spaces of the latter ones.

Throughout the paper K will denote a Keller compactum. As usual, 2K denotes the
hyperspace of all non-empty compact subsets of K endowed with the topology induced
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by the Hausdorff metric:

dH(A,B) = max

{
sup
b∈B

d(b, A), sup
a∈A

d(a,B)

}
, A,B ∈ 2K ,

where d is any compatible metric on K. Recall that all compatible metrics on K induce
the same topology on 2K [16, Theorem 3.2].

By cc(K) we denote the subspace of 2K consisting of all compact convex subsets of
K.

Let G be a compact topological group acting affinely on K, i.e., every g ∈ G satisfies
the equality (2.2) below. In this paper we study the induced action of G on the hyper-
spaces 2K and cc(K). Namely, the action of G on K induces a continuous action of G
on 2K , which is given by the rule:

(1.1) (g,A) 7→ gA = {ga | a ∈ A}, g ∈ G, A ∈ 2K .

Continuity of this action easily follows. Indeed, consider the map r : G × 2K → 2G×K

given by the rule r
(
(g,A)

)
= {g} × A. The action defined in the formula (1.1) can now

be written as the composition θ = 2F ◦ r where F : G×K → K is the action of G on K.
Since r and 2F are continuous, the composition is also continuous.

Obviously, the hyperspace cc(K) is an invariant subset of 2K under the action (1.1).
By Curtis-Schori-West Hyperspace Theorem (see, e.g., [14, Theorem 8.4.5]), 2K is

homeomorphic to the Hilbert cube. It was proved in [15] that for any compact convex
subset X of a locally convex metrizable linear space with dimX > 1, the hyperspace
cc(X) is homeomorphic to the Hilbert cube. Since K is affinely homeomorphic to an
infinite-dimensional compact convex subset V of `2, cc(K) is homeomorphic to cc(V )
(see [16, Theorem 1.3]). Consequently, these two facts yield that cc(K) is homeomorphic
to the Hilbert cube.

Our interest in orbit spaces of hyperspaces of Keller compacta relies on the relationship
between such classical objects like the Banach-Mazur compacta BM(n), n ≥ 2, from one
hand and the orbit spaces of certain geometrically defined hyperspaces of the Euclidean
closed unit ball Bn = {(x1, ..., xn) ∈ Rn |

∑n
i=1 x

2
i ≤ 1}, from the other hand (see [4]).

Since the Keller compacta K are natural infinite-dimensional analogs of Bn, studying the
topological structure of orbit spaces of 2K and cc(K) with respect to compact topological
groups acting affinely on K seems quite natural and interesting.

The main goal of this paper is to prove that if there exists a G-fixed point in the
radial interior of K then the orbit spaces 2K/G and cc(K)/G are homeomorphic to the
Hilbert cube (see Theorem 4.1). In Corollary 4.4 we show that if K has a center of
symmetry, then the latter one is fixed under every element g ∈ G. Since the Hilbert cube
Q satisfies this condition, we get the homeomorphisms 2Q/G ∼= Q and cc(Q)/G ∼= Q
(see Corollary 4.5). As a by-product, we give also a short and easy proof of the above
mentioned homeomorphism cc(K) ∼= Q for Keller compacta K with non-empty radial
interior.

2. Preliminaries

We refer the reader to the monographs [9] and [17] for basic notions of the theory of
G-spaces. However, we recall here some special definitions and results that will be used
throughout the paper.

All maps between topological spaces are assumed to be continuous. A map f : X → Y
between G-spaces is called G-equivariant (or simply equivariant) if f(gx) = gf(x) for
every x ∈ X and g ∈ G.

Let (X, d) be a metric G-space. If d(gx, gy) = d(x, y) for every x, y ∈ X and g ∈ G,
then we say that d is a G-invariant (or simply invariant) metric. That is, every g ∈ G
is actually an isometry of X with respect to the metric d.

Let G be a compact group and X a metric G-space with an invariant metric d. It
is well-known (see, e.g., [17, Proposition 1.1.12]) that the quotient topology of the orbit



HYPERSPACES OF KELLER COMPACTA 3

space X/G is generated by the metric

d∗(G(x), G(y)) = inf
g∈G

d(x, gy), G(x), G(y) ∈ X/G.

Evidently,

(2.1) d∗(G(x), G(y)) ≤ d(x, y), x, y ∈ X.
For a given topological group G, a metrizable G-space X is called a G-equivariant absolute
neighborhood retract (denoted byX ∈ G-ANR) if for any metrizableG-space Z containing
X as an invariant closed subset, there exist an invariant neighborhood U of X in Z and
a G-retraction r : U → X. If we can always take U = Z, then we say that X is a
G-equivariant absolute retract (denoted by X ∈ G-AR).

A point x0 in a G-space X is called a G-fixed point if gx0 = x0 for every g ∈ G.
A Hilbert cube manifold or a Q-manifold is a separable metrizable space that admits

an open cover each member of which is homeomorphic to an open subset of the Hilbert
cube Q. We refer the reader to [10] and [14] for the theory of Q-manifolds.

Let V and V ′ be convex subsets of linear spaces L and L′ respectively. A map
f : V → V ′ is called affine, if for any n ≥ 1, one has

(2.2) f
( n∑
i=1

tixi

)
=

n∑
i=1

tif(xi),

whenever xi ∈ V , ti ≥ 0 and
∑n
i=1 ti = 1.

A point x0 ∈ K is said to be internal [8, Definition 4.2] if for every x ∈ K,

inf{|t| | x0 + t(x− x0) /∈ K} > 0.

Equivalently, x0 ∈ K is internal if for every x ∈ K, there exists t < 0 such that x0 +
t(x− x0) belongs to K (see [7, p. 162]).

The set of all internal points of K is called the radial interior of K and is denoted by
rintK. The complement K\ rintK is called the radial boundary of K and is denoted by
rbdK.

Whereas the radial boundary of any Keller compactum is a dense subset (see [8, Ch. V,
§4, Corollary 4.2]), there exist Keller compacta with empty radial interior. An example
of this is given in [8, p. 161]. However, if rintK 6= ∅, then

(2.3) rintK = x0 + [0, 1)(K − x0)

for every x0 ∈ rintK and it is also a dense subset of K [8, Ch. V, §4, Proposition 4.4].
Observe that the definition of rintK has been stated in affine topological terms. In

particular, this notion is invariant under affine homeomorphism, i.e., if ξ : K → V is an
affine homeomorphism of two Keller compacta, then ξ(rintK) = rintV , or equivalently,
ξ(rbdK) = rbdV .

It is clear that if a Keller compactum K has a center of symmetry, then it must belong
to rintK.

Recall that a point x0 ∈ K is a center of symmetry if for every x ∈ K, there exists
a y ∈ K such that x0 = (x + y)/2. If K admits a center of symmetry, then it is
called centrally symmetric. It is well-known and easy to see that any centrally symmetric
compact convex subset of a normed linear space has exactly one center of symmetry; we
shall use this fact in the proof of Corollary 4.4 below.

The convex hull of a subset A ⊂ K will be denoted by convA. Let d be a compatible
metric on K. For any r > 0 and A ∈ 2K , we denote by

B(A, r) = {x ∈ K | d(x,A) < r} and C(A, r) = {x ∈ K | d(x,A) ≤ r},
the open r-neighborhood and the closed r-neighborhood of A in K, respectively.

Let G be a topological group and L a real topological linear space. We call L a linear
G-space if it is endowed with a linear action of G, i.e., if

g(λx+ y) = λ(gx) + gy
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for every g ∈ G, λ ∈ R and x, y ∈ L. If, in addition, L admits an invariant norm
‖ · ‖ : L→ R, i.e.,

(2.4) ‖gx‖ = ‖x‖
for every g ∈ G and x ∈ L, then we call L a normed linear G-space. In this case, the
metric induced by the norm is invariant:

(2.5) ‖gx− gy‖ = ‖g(x− y)‖ = ‖x− y‖.
If moreover (L, ‖ · ‖) is a Banach space, then we call L a Banach G-space.

For a compact topological group G, we denote by C(G,L) the real topological linear
space of all maps from G to L endowed with the compact-open topology. The action of
G on C(G,L) is given by the rule:

(2.6) (gf)(x) = f(xg), g, x ∈ G, f ∈ C(G,L),

(see [2, Proposition 4]). This action turns C(G,L) into a linear G-space. Furthermore,
if (L, ‖ · ‖) is a Banach space, then the supremum norm on C(G,L):

(2.7) ‖f‖ = sup
x∈G
‖f(x)‖,

is invariant. Indeed,

‖gf‖ = sup
x∈G
‖f(xg)‖ = sup

y∈G
‖f(y)‖ = ‖f‖.

Thus, C(G,L) becomes a Banach G-space. Observe that due to compactness of G, the
topology induced by the norm (2.7) on C(G,L) is just the compact-open one.

Recall that a metric space X is called continuum-connected if each pair of points in
X is contained in a subcontinuum. X is locally continuum-connected if it has an open
base of continuum-connected subsets.

The following theorems will play an essential role in our proofs.

Theorem 2.1 ([3, Theorem 8]). Let G be a compact group and X a separable G-ANR
(resp., a G-AR). Then the orbit space X/G is an ANR (resp., an AR).

Theorem 2.2 ([5, Proposition 3.1]). Let G be a compact group and X a locally continuum-
connected (resp., connected and locally continuum-connected) metrizable G-space. Then
2X is a G-ANR (resp., a G-AR).

3. Equivariant affine embedding in a Banach G-space

In this section we prove the following equivariant embedding result.

Proposition 3.1. Let G be a compact group acting affinely on a Keller compactum K.
Then there is an affine equivariant embedding of K into a Banach G-space.

Proof. Let h : K → `2 be an affine embedding. Then, h induces an equivariant embed-

ding h̃ : K → C(G, `2) according to the rule:

(3.1) h̃(x)(g) = h(gx), x ∈ K, g ∈ G,
where C(G, `2) is endowed with the linear action of G defined by the formula (2.6) (see
[20, Theorem 2], cf. [2, Theorem 3]). Moreover, since `2 is a Banach space, the supremum
norm on C(G, `2) (see formula (2.7)) turns C(G, `2) into a Banach G-space. Next, since

G acts affinely on K and h is an affine map, h̃ is also an affine map. Indeed, let n ∈ N,
xi ∈ K and ti ≥ 0 such that

∑n
i=1 ti = 1. Then for every g ∈ G we have

h̃
( n∑
i=1

tixi

)
(g) = h

(
g

n∑
i=1

tixi

)
= h

( n∑
i=1

tigxi

)
=

n∑
i=1

tih(gxi)

=

n∑
i=1

ti

(
h̃(xi)(g)

)
=

n∑
i=1

(
tih̃(xi)

)
(g) =

( n∑
i=1

tih̃(xi)
)

(g).
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Hence,

h̃
( n∑
i=1

tixi

)
=

n∑
i=1

tih̃(xi),

showing that h̃ is an affine map. Thus, K embedds as an invariant convex subset in the
Banach G-space C(G, `2). �

Corollary 3.2. Let G be a compact group acting affinely on a Keller compactum K.
Then K ∈ G-AR and consequently, the orbit space K/G ∈ AR.

Proof. That K ∈ G-AR follows directly from Proposition 3.1 and [1, Theorem 2] (see
also [2, Corollary 7]). Then, Theorem 2.1 implies that K/G ∈ AR. �

Proposition 3.3. Let G be a compact group that acts affinely on Keller compacta K and
V and assume that ξ : K → V is an affine G-equivariant homeomorphism. Then the in-
duced hyperspace map 2ξ :

(
2K , cc(K)

)
→
(
2V , cc(V )

)
is a G-equivariant homeomorphism

of the pairs yielding the homeomorphy of the respective G-orbit spaces. Furthermore, if
there is a G-fixed pont x0 ∈ rint K, then ξ(x0) is a G-fixed point belonging to rintV .

Proof. By [16, Theorem 1.3], the hyperspace map 2ξ : 2K → 2V , which is defined by
2ξ(A) = ξ(A), is a homeomorphism. Since ξ is an affine map, 2ξ restricts to a homeo-
morphism 2ξ |cc(K) from cc(K) onto cc(V ). Furthermore, the G-equivariance of ξ implies

the G-equivariance of 2ξ and 2ξ |cc(K). Next, since x0 is a G-fixed point and ξ is equi-
variant, ξ(x0) is also a G-fixed point. Finally, since the radial interior is invariant of an
affine homeomorpism, x0 ∈ rintK implies that ξ(x0) ∈ rintV . �

4. Orbit spaces of 2K and cc(K)

In this section we prove the main result of the paper:

Theorem 4.1. Let G be a compact group acting affinely on a Keller compactum K.
If K has a G-fixed point x0 ∈ rintK, then the orbit spaces 2K/G and cc(K)/G are
homeomorphic to the Hilbert cube.

We begin with the following proposition.

Proposition 4.2. Let G be a compact group acting affinely on a Keller compactum K.
Then the orbit space cc(K)/G is a compact AR.

Proof. Since the notions involved are affine-topological, we may assume that K ⊂ `2. By
[19, Lemma 2.1], the closed convex hull operator conv : 2K → cc(K); A 7→ convA, is a
(continuous) retraction. Since every g ∈ G preserves convex combinations, this retraction
is an equivariant map. By Theorem 2.2, 2K is a compact G-AR. Hence, cc(K), being an
equivariant retract of 2K , is also a compact G-AR. Therefore, by Theorem 2.1, the orbit
space cc(K)/H is a compact AR. �

Lemma 4.3. If there is a G-fixed point x0 ∈ rintK, then for every ε > 0, there exist
G-equivariant maps ϕ,ψ :

(
2K , cc(K)

)
→
(
2V , cc(V )

)
, ε-close to the identity map of 2K

such that Imϕ ∩ Imψ = ∅.

Proof. Since K is a compact convex set, there exists 0 < λ < 1 such that

(4.1) d(x, x0 + λ(x− x0)) < ε/2

for every x ∈ K.
Let ϕ : 2K → 2K be defined by

ϕ(A) = x0 + λ(A− x0) = {x0 + λ(a− x0) | a ∈ A}, A ∈ 2K .
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Then ϕ is continuous, since it is just the hyperspace map 2f of the map f : K → K
defined by f(x) = x0 + λ(x− x0) (see [14, §5.3]). Since G acts affinely on K and x0 is a
G-fixed point, the map ϕ is G-equivariant, for if h ∈ G and A ∈ 2K , then

ϕ(hA) = {x0 + λ(ha− x0) | a ∈ A} = {h(x0 + λ(a− x0)) | a ∈ A}
= h{x0 + λ(a− x0) | a ∈ A} = hϕ(A).

To see that ϕ is ε-close to the identity map of 2K , take A ∈ 2K . Then

d(a, ϕ(A)) ≤ d(a, x0 + λ(a− x0)) and d(x0 + λ(a− x0), A) ≤ d(x0 + λ(a− x0), a)

for every a ∈ A. Consequently, by inequality (4.1), dH(A,ϕ(A)) ≤ ε/2 < ε.
Note that by equality (2.3), ϕ(A) ⊂ rintK. This yields that ϕ(A) ∩ rbdK = ∅ for

every A ∈ 2K .
Next, let ψ : 2K → 2K be defined by

ψ(A) = {x ∈ C | d(x,A) ≤ ε/2}, A ∈ 2C .

Then ψ(A) is just the closed ε/2-neighborhood of A in K. Continuity of ψ is a well
known fact. Indeed, it follows from the inequality dH(ψ(A), ψ(B)) ≤ dH(A,B) for all
A,B ∈ 2K , if we take into account that d, being induced by a norm, is a geodesic (or
convex) metric (see [16, Proposition 10.5]).

The G-equivariance of ψ follows from the G-invariance of d (see the equalities (2.4)
and (2.5)). Clearly, ψ is ε-close to the identity map of 2K . Finally, since rbdK is dense
in K (see [8, Ch. V, §4, Corollary 4.2]), we infer that ψ(A)∩ rbdK 6= ∅ for every A ∈ 2K .
Therefore, Imϕ ∩ Imψ = ∅, as required.

It remains to observe that ϕ(A) ∈ cc(K) whenever A ∈ cc(K). On the other hand,
since the metric in K is induced by a norm, the compact set ψ(A) is also convex for
every A ∈ cc(K). This completes the proof. �

Proof of Theorem 4.1. By Proposition 3.1 and 3.3, we can assume that K is an invariant
subset of a Banach G-space and K admits a G-fixed point x0 ∈ rintK.

First we consider the case of 2K/G. It follows from Theorems 2.1 and 2.2 that the
orbit space 2K/G is a compact AR. Thus, by [10, Theorem 22.1], it remains to show that
2K/G is a Q-manifold. According to Toruńczyk’s Characterization Theorem (see [22]),
it suffices to show that there exist maps f1, f2 : 2K/G → 2K/G, arbitrarily close to the
identity map of 2K/G such that Im f1 ∩ Im f2 = ∅.

Let ε > 0. By Lemma 4.3, there exist G-equivariant maps ϕ,ψ : 2K → 2K , ε-close to

the identity map of 2K with Imϕ ∩ Imψ = ∅. Let ϕ̃ : 2K/G → 2K/G and ψ̃ : 2K/G →
2K/G be the maps induced by ϕ and ψ, respectively (see [17, Proposition 1.1.17]). By

inequality (2.1), the maps ϕ̃ and ψ̃ are ε-close to the identity map of 2K/G. Finally, ϕ̃

and ψ̃ have disjoint images, since Imϕ ∩ Imψ = ∅ and

Im ϕ̃ ∩ Im ψ̃ =
Imϕ

G
∩ Imψ

G
=

Imϕ ∩ Imψ

G
.

This completes the proof for 2K/G.
For cc(K)/G the argument is quite analogous. Indeed, by Proposition 4.2, the orbit

space is a compact AR. Then the restrictions ϕ̃|cc(K)/G and ψ̃|cc(K)/G are ε-close to the
identity map of cc(K)/G and have disjoint images. The proof of Theorem 4.1 is now
complete. �

Corollary 4.4. Let K be any centrally symmetric Keller compactum. Then the orbit
spaces 2K/G and cc(K)/G are homeomorphic to the Hilbert cube.

Proof. Let y0 ∈ K be the (unique) center of symmetry of K. Hence, for every x ∈ K,
there is a point y ∈ K such that y0 = (x + y)/2. Then y0 belongs to the segment
[y, x] ⊂ K, and thus, y0 ∈ rintK. Uniqueness of the center of symmetry implies that y0

is a G-fixed point, for if there is an h ∈ G such that y0 6= hy0, then there is a point x ∈ K
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such that for every y ∈ K, hy0 6= (x+ y)/2. Let z ∈ K be such that y0 = (h−1x+ z)/2.
Since G acts affinely on K, we have that hy0 = (x + hz)/2, a contradiction. The result
now follows from Theorem 4.1. �

Let G be a compact group acting affinely on the Hilbert cube Q. Then the origin of
R∞ is the center of symmetry of Q, and hence, it is a G-fixed point. Due to a particular
importance of this case, we state it as a separate corollary.

Corollary 4.5. Let G be a compact group acting affinely on the Hilbert cube Q. Then
the orbit spaces 2Q/G and cc(Q)/G are homeomorphic to the Hilbert cube.

In connection with Theorem 4.1 we have the following remark.

Remark 4.6. In case G is a compact Lie group acting non-transitively on a non-
degenerate Peano continuum X (i.e., a locally connected compact metrizable space that
contains more than one point), the following stronger result of the first author [6] is worth
mentioning: the orbit space 2X/G is homeomorphic to the Hilbert cube.

However, since there exist compact non-Lie groups acting affinely on Keller compacta,
the above Theorem 4.1 is not a particular case of this result. For instance, the closed
subgroup of the group Iso(Q) of isometries of the Hilbert cube (Q, ρ) consisting of all
isometries g : Q → Q such that g(x)n = ±xn for every x = (xn) ∈ Q, is topologically
isomorphic to the Cantor group Z∞2 , which is not a Lie group.

5. concluding remarks and questions

Typically, compact groups that act effectively and affinely on the Hilbert cube Q
are the groups of affine isometries and their closed subgroups. More precisely, let H(Q)
denote the topological group of all homeomorphisms of the Hilbert cube Q equipped with
the compact open topology. Denote by Aff (Q) the closed subgroup of H(Q) consisting
of all affine homeomorphisms. Further, for every compatible metric d on Q, the group
Iso (Q, d) of all d-isometries of Q is a compact subgroup ofH(Q) (by the way, the compact
open topology on Iso (Q, d) coincides with the topology of pointwise convergence). The
intersection Afis (Q) = Aff (Q) ∩ Iso (Q, d) is just the group of affine d-isometries of Q.

Clearly, Afis (Q) is a compact group which acts effectively on Q via the evaluation
map, i.e., g ∗x = g(x) for every g ∈ Afis (Q) and x ∈ Q. Moreover, any compact group G
which acts effectively and affinely on Q is a subgroup (up to a topological isomorphism)
of Afis (Q) for some compatible metric d. Indeed, parting from any compatible metric
σ of Q, define dσ(x, y) = sup

g∈G
σ(gx, gy). Then dσ is a compatible G-invariant metric for

Q. Next, the map G → Iso (Q, dσ) which sends an element g ∈ G to the isomorphism
g̃ ∈ Iso (Q, dσ) defined by g̃(x) = gx, x ∈ Q, is a topological monomorphism of topological
groups. Therefore, if in addition, G acts affinely on Q, then it is topologically isomorphic
to a subgroup of Afis (Q, dσ).

It is worth mentioning that H(Q) is homeomorphic to the Hilbert space `2 (it was
established in Torunczyk [21] thatH(Q) is an `2-manifold wile the contractibility ofH(Q)
was proved earlier in Renz [18]). However, there are no results concerning topological
structures of the subgroups of H(Q) above mentioned. More specifically, we ask the
following.

Question 5.1. Describe topological structures of the topological groups Aff (Q), Iso (Q, ρ)
and Iso (H, d), where ρ is the standart metric on the Hilbert cube Q and d is the `2-metric
on the Hilbert brick H. In particular, are these groups absolute neighborhood retracts?

We end the paper with the following question.

Question 5.2. Is Theorem 4.1 still true for Keller compacta with empty radial interior
and infinite G?
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