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Abstract. For every n ≥ 2, let cc(Rn) denote the hyperspace of all
nonempty compact convex subsets of the Euclidean space Rn endowed
with the Hausdorff metric topology. Let cb(Rn) be the subset of cc(Rn)
consisting of all compact convex bodies. In this paper we discover several
fundamental properties of the natural action of the affine group Aff(n) on
cb(Rn). We prove that the space E(n) of all n-dimensional ellipsoids is an
Aff(n)-equivariant retract of cb(Rn). This is applied to show that cb(Rn)
is homeomorphic to the product Q×Rn(n+3)/2, where Q stands for the
Hilbert cube. Furthermore, we investigate the action of the orthogonal
group O(n) on cc(Rn). In particular, we show that if K ⊂ O(n) is a closed
subgroup that acts non-transitively on the unit sphere Sn−1, then the or-
bit space cc(Rn)/K is homeomorphic to the Hilbert cube with a removed
point, while cb(Rn)/K is a contractible Q-manifold homeomorphic to
the product (E(n)/K) × Q. The orbit space cb(Rn)/Aff(n) is homeo-
morphic to the Banach-Mazur compactum BM(n), while cc(Rn)/O(n)
is homeomorphic to the open cone over BM(n).

1. Introduction

Let cc(Rn) denote the hyperspace of all nonempty compact subsets of

the Euclidean space Rn, n ≥ 1, equipped with the Hausdorff metric:

dH(A,B) = max

{
sup
b∈B

d(b, A), sup
a∈A

d(a,B)

}
,

where d is the standard Euclidean metric on Rn.

By cb(Rn) we shall denote the subspace of cc(Rn) consisting of all com-

pact convex bodies of Rn, i.e.,

cb(Rn) = {A ∈ cc(Rn) | IntA 6= ∅}.

It is easy to see that cc(R1) is homeomorphic to the closed semi-plane

{(x, y) ∈ R2 | x ≤ y}, while cb(R1) is homeomorphic to R2. In [21] it was

proved that for n ≥ 2, cc(Rn) is homeomorphic to the punctured Hilbert

cube, i.e., Hilbert cube with a removed point. Furthermore, a simple com-

bination of [6, Corollary 8] and [7, Theorem 1.4] yields that the hyperspace

2010 Mathematics Subject Classification. Primary 57N20, 57S10, 46B99; Secondary
55P91, 54B20, 54C55.

Key words and phrases. Convex set, hyperspace, affine group, proper action, slice,
orbit space, Banach-Mazur compacta, Q-manifold.

The authors were supported by CONACYT grants 165195 and 207212, respectively.
1



2 S.A. ANTONYAN AND N. JONARD-PÉREZ

B(n), consisting of all centrally symmetric (about the origin) convex bod-

ies A ∈ cb(Rn), n ≥ 2, is homeomorphic to Rp × Q, where Q denotes the

Hilbert cube and p = n(n + 1)/2. However, the topological structure of

cb(Rn) remained open.

In this paper we study the topological structure of the hyperspace cb(Rn).

Namely, we will show that cb(Rn) is homeomorphic to the product Q ×
Rn(n+3)/2. Our argument is based on some fundamental properties of the

natural action of the affine group Aff(n) on cb(Rn). On this way we prove

that Aff(n) acts properly on cb(Rn) (Theorem 3.3). Using a well-known

result in affine convex geometry about the minimal-volume ellipsoid, we

construct a convenient global O(n)-slice L(n) for cb(Rn). Namely, as it was

proved by F. John [17], for each A ∈ cb(Rn) there exists a unique minimal-

volume ellipsoid l(A) that contains A (see also [15]). It turns out that the

map l : cb(Rn) → E(n) is an Aff(n)-equivariant retraction onto the subset

E(n) of cb(Rn) consisting of all n-dimensional ellipsoids (see Theorem 3.6).

Then the convenient global O(n)-slice of cb(Rn) is just the inverse image

L(n) = l−1(Bn) of the n-dimensional closed Euclidean unit ball Bn = {x ∈
Rn | ‖x‖ ≤ 1}. In other words, L(n) is the subspace of cb(Rn) consisting

of all convex bodies A for which Bn is the minimal-volume ellipsoid. This

fact yields that the two orbit spaces cb(Rn)/Aff(n) and L(n)/O(n) are

homeomorphic (Corollary 3.7(2)). Taking into account the compactness of

L(n) (see Proposition 3.4(d)) we rediscover Macbeath’s result [20] from early

fifties to the effect that cb(Rn)/Aff(n) is compact (Corollary 3.7(1)).

We show in Corollary 3.9 that cb(Rn) is homeomorphic (even O(n)-

equivariantly) to the product L(n) × E(n). Further, in Section 5 we prove

that L(n) is homeomorphic to the Hilbert cube (Corollary 5.9), while E(n)

is homeomorphic to Rn(n+3)/2 (see Corollary 3.10). Thus, we get that cb(Rn)

is homeomorphic to the product Q× Rn(n+3)/2 (Corollary 3.11), one of the

main results of the paper.

In Corollary 3.8 we prove that the orbit space cb(Rn)/Aff(n) is homeo-

morphic to the Banach-Mazur compactum BM(n). Recall that BM(n) is the

set of isometry classes of n-dimensional Banach spaces topologized by the

following metric best known in Functional Analysis as the Banach-Mazur

distance:

d(E,F ) = ln inf
{
‖T‖ · ‖T−1‖

∣∣ T : E → F is a linear isomorphism
}
.

These spaces were introduced in 1932 by S. Banach [11] and they con-

tinue to be of interest. The original geometric representation of BM(n) is

based on the one-to-one correspondence between norms and odd symmetric
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convex bodies (see [30, p. 644] and [19, p. 1191]). A. Pelczyński’s question

of whether the Banach-Mazur compacta BM(n) are homeomorphic to the

Hilbert cube (see [30, Problem 899]) was answered negatively for n = 2 by

the first author [6]; the case n ≥ 3 still remains open. The reader can find

other results concerning the Banach-Mazur compacta and related spaces in

[7].

In Section 4 we study the hyperspace M(n) of all compact convex sub-

sets of the unit ball Bn which intersect the boundary sphere Sn−1. It is

established in Corollary 4.13 that for every closed subgroup K ⊂ O(n) that

acts non-transitively on the unit sphere Sn−1, the K-orbit space M(n)/K

is homeomorphic to the Hilbert cube. In particular, M(n) is homeomorphic

to the Hilbert cube. On the other hand, M0(n)/K is a Hilbert cube man-

ifold for each closed subgroup K ⊂ O(n), where M0(n) = M(n) \ {Bn}.
In Theorem 4.16 it is established that the orbit space M(n)/O(n) is just

homeomorphic to the Banach-Mazur compactum BM(n). The main tech-

nique we develop in this section is further applied to Section 5 as well. Here

we establish analogous properties of the global O(n)-slice L(n) of the proper

Aff(n)-space cb(Rn) (see Proposition 5.8, Corollary 5.9 and Theorem 5.11).

In Sections 6 and 7 we investigate some orbit spaces of cc(Rn) and cb(Rn).

We prove in Theorem 7.1 that if K is a closed subgroup of O(n) which acts

non-transitively on the unit sphere Sn−1, then the orbit space cc(Rn)/K is

homeomorphic to the punctured Hilbert cube. The orbit space cc(Rn)/O(n)

is homeomorphic to the open cone over the Banach-Mazur compactum

BM(n) (Theorem 7.2). Respectively, the orbit space cb(Rn)/K is a con-

tractible Q-manifold homeomorphic to the product (E(n)/K)×Q (see The-

orem 6.1), while topological structure of the orbit space cb(Rn)/O(n) mainly

remains unknown.

The paper consists of the following 7 sections:

§1. Introduction.

§2. Preliminaries.

§3. Affine group acting properly on cb(Rn).

§4. The hyperspace M(n).

§5. Some properties of L(n).

§6. Orbit spaces of cb(Rn).

§7. Orbit spaces of cc(Rn).
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2. Preliminaries

We refer the reader to the monographs [12] and [22] for basic notions of

the theory of G-spaces. However we will recall here some special definitions

and results which will be used throughout the paper.

All topological spaces and topological groups are assumed to be Ty-

chonoff.

If G is a topological group and X is a G-space, for any x ∈ X we

denote by Gx the stabilizer of x, i.e., Gx = {g ∈ G | gx = x}. For a

subset S ⊂ X and a subgroup H ⊂ G, H(S) denotes the H-saturation

of S, i.e., H(S) = {hs | h ∈ H, s ∈ S}. If H(S) = S then we say that

S is an H-invariant set. In particular, G(x) denotes the G-orbit of x, i.e.,

G(x) = {gx ∈ X | g ∈ G}. The orbit space is denoted by X/G.

For each subgroup H ⊂ G, the H-fixed point set XH is the set {x ∈ X |
H ⊂ Gx}. Clearly, XH is a closed subset of X.

The family of all subgroups of G that are conjugate to H is denoted by

[H], i.e., [H] = {gHg−1 | g ∈ G}. We will call [H] a G-orbit type (or simply

an orbit type). For two orbit types [H1] and [H2], one says that [H1] � [H2]

iff H1 ⊂ gH2g
−1 for some g ∈ G. The relation � is a partial ordering on

the set of all orbit types. Since Ggx = gGxg
−1 for any x ∈ X and g ∈ G, we

have [Gx] = {Ggx | g ∈ G}.
A continuous map f : X → Y between two G-spaces is called equivariant

or a G-map if f(gx) = g(fx) for every x ∈ X and g ∈ G. If the action of G

on Y is trivial and f : X → Y is an equivariant map, then we will say that

f is an invariant map.

For any subgroup H ⊂ G, we will denote by G/H the G-space of cosets

{gH | g ∈ G} equipped with the action induced by left translations.

A G-space X is called proper (in the sense of Palais [23]) if it has an

open cover consisting of, so called, small sets. A set S ⊂ X is called small

if any point x ∈ X has a neighborhood V such that the set 〈S, V 〉 = {g ∈
G | gS ∩ V 6= ∅}, called the transporter from S to V , has compact closure

in G.

Each orbit in a proper G-space is closed, and each stabilizer is compact

([23, Proposition 1.1.4]). If G is a locally compact group and Y is a proper

G-space, then for every point y ∈ Y the orbit G(y) is G-homeomorphic to

G/Gy [23, Proposition 1.1.5].

For a given topological group G, a metrizable G-space Y is called a G-

equivariant absolute neighborhood retract (denoted by Y ∈ G-ANR) if for

any metrizable G-space M containing Y as an invariant closed subset, there
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exist an invariant neighborhood U of Y in M and a G-retraction r : U → Y .

If we can always take U = M , then we say Y is a G-equivariant absolute

retract (denoted by Y ∈ G-AR).

Let us recall the well known definition of a slice [23, p. 305]:

Definition 2.1. Let X be a G-space and H a closed subgroup of G. An H-

invariant subset S ⊂ X is called an H-slice in X, if G(S) is open in X and

there exists a G-equivariant map f : G(S) → G/H such that S=f−1(eH).

The saturation G(S) is called a tubular set. If G(S) = X, then we say that

S is a global H-slice of X.

In case of a compact group G one has the following intrinsic characteri-

zation of H-slices. A subset S ⊂ X of a G-space X is an H-slice if and only

if it satisfies the following four conditions: (1) S is H-invariant, (2) G(S) is

open in X, (3) S is closed in G(S), (4) if g ∈ G \H then gS ∩ S = ∅ (see

[12, Ch. II, §4 and §5]).

The following is one of the fundamental results in the theory of topolog-

ical transformation groups (see, e.g., [12, Ch. II, §4 and §5]):

Theorem 2.2 (Slice Theorem). Let G be a compact Lie group, X a Ty-

chonoff G-space and x ∈ X any point. Then:

(1) There exists a Gx-slice S ⊂ X such that x ∈ S.

(2) [Gy] � [Gx] for each point y ∈ G(S).

Let G be a compact Lie group and X a G-space. By a G-normal cover

of X, we mean a family

U = {gSµ | g ∈ G, µ ∈M}

where each Sµ is an Hµ-slice for some closed subgroup Hµ of G, the fam-

ily of saturations {G(Sµ)}µ∈M is an open cover for X and there exists a

locally finite invariant partition of unity {pµ : X → [0, 1] | µ ∈ M} sub-

ordinated to {G(Sµ)}µ∈M . That is to say, each pµ is an invariant function

with p−1µ
(
(0, 1]

)
⊂ G(Sµ) and the supports {p−1µ

(
(0, 1]

)
| µ ∈M} constitute

a locally finite family. We refer to [7] for further information concerning

G-normal covers.

Yet another result which plays an important role in the paper is the

following one:

Theorem 2.3 (Orbit Space Theorem [4]). Let G be a compact Lie group

and X a G-ANR (resp., a G-AR). Then the orbit space X/G is an ANR

(resp., an AR).
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Let (X, d) be a metric G-space. If d(gx, gy) = d(x, y) for every x, y ∈ X
and g ∈ G, then we will say that d is a G-invariant (or simply invariant)

metric.

Suppose that G is a compact group acting on a metric space (X, d). If

d is G-invariant, it is well-known [22, Proposition 1.1.12] that the quotient

topology of X/G is generated by the metric

(2.1) d∗(G(x), G(y)) = inf
g∈G

d(x, gy), G(x), G(y) ∈ X/G.

It is evident that

(2.2) d∗(G(x), G(y)) ≤ d(x, y), x, y ∈ X.

In the sequel we will denote by d the Euclidean metric on Rn. For any

A ⊂ Rn, and ε > 0, we denote N(A, ε) = {x ∈ Rn | d(x,A) < ε}. In

particular, for every x ∈ Rn, N(x, ε) denotes the open ε-ball around x. On

the other hand, if C ⊂ cc(Rn) then for every A ∈ C we shall use O(A, ε) for

the ε-open ball centered at the point A in C, i.e.,

O(A, ε) = {B ∈ C | dH(A,B) < ε},

where dH stands for the Hausdorff metric induced by d.

For every subset A ⊂ X of a topological space X, we will use the symbols

∂A and A to denote, respectively, the boundary and the closure of A in X.

We will denote by Bn the n-dimensional Euclidean closed unit ball and

by Sn−1 the corresponding unit sphere, i.e.,

Bn =
{

(x1, . . . , xn) ∈ Rn
∣∣ n∑

i1

x2i ≤ 1
}

and

Sn−1 =
{

(x1, . . . , xn) ∈ Rn
∣∣ n∑

i1

x2i = 1
}
.

The Hilbert cube [0, 1]∞ will be denoted by Q. By cc(Bn) we denote the

subspace of cc(Rn) consisting of all A ∈ cc(Rn) such that A ⊂ Bn. It is well

known that cc(Bn) is homeomorphic to the Hilbert cube (see [21, Theorem

2.2]).

A Hilbert cube manifold or a Q-manifold is a separable, metrizable space

that admits an open cover each member of which is homeomorphic to an

open subset of the Hilbert cube Q. We refer to [14] and [28] for the theory

of Q-manifolds.

A closed subset A of a metric space (X, d) is called a Z-set if the set

{f ∈ C(Q,X) | f(Q) ∩ A = ∅} is dense in C(Q,X), being C(Q,X) the

space of all continuous maps from Q to X endowed with the compact-open
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topology. In particular, if for every ε > 0 there exists a map f : X → X \A
such that d(x, f(x)) < ε, then A is a Z-set.

A map f : X → Y between topological spaces is called proper provided

that f−1(C) is compact for each compact set C ⊂ Y . A proper map f :

X → Y between ANR’s is called cell-like (abbreviated CE) if it is onto and

each point inverse f−1(y) has the property UV ∞. That is to say, for each

neighborhood U of f−1(y) there exists a neighborhood V ⊂ U of f−1(y)

such that the inclusion V ↪→ U is homotopic to a constant map of V into

U . In particular, if f−1(y) is contractible, then it has the property UV ∞

(see [14, Ch. XIII]).

3. Affine group acting properly on cb(Rn)

Let (X, d) be a metric space and G a topological group acting continu-

ously on X. Consider the hyperspace 2X consisting of all nonempty compact

subsets of X equipped with the Hausdorff metric topology. Define an action

of G on 2X by the rule:

(3.1) (g, A) 7−→ gA, gA = {ga | a ∈ A}.

The reader can easily verify the continuity of this action.

3.1. Properness of the Aff(n)-action on cb(Rn). Throughout the paper,

n will always denote a natural number greater than or equal to 2.

We will denote by Aff(n) the group of all affine transformations of Rn.

Let us recall the definition of Aff(n). For every v ∈ Rn let Tv : Rn → Rn be

the translation by v, i.e., Tv(x) = v + x for all x ∈ Rn. The set of all such

translations is a group isomorphic to the additive group of Rn. For every

σ ∈ GL(n) and v ∈ Rn it is easy to see that σTvσ
−1 = Tσ(v). This yields

a homomorphism from GL(n) to the group of all linear automorphisms of

Rn, and hence, we have an (internal) semidirect product:

Rn oGL(n)

called the Affine Group of Rn (see e.g. [2, p. 102]). Each element g ∈ Aff(n)

is usually represented by g = Tv + σ, where σ ∈ GL(n) and v ∈ Rn, i.e.,

g(x) = v + σ(x), for every x ∈ Rn,

As a semidirect product, Aff(n) is topologized by the product topology

of Rn×GL(n) thus becoming a Lie group with two connected components.

Since the topology of GL(n) is the one inherited from Rn2
, we can also give

a natural topological embedding of Aff(n) into Rn × Rn2
= Rn(n+1) which

will be helpful in the proof of Theorem 3.3.
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Clearly, the natural action of Aff(n) on Rn is continuous. This action

induces a continuous action on 2Rn . Observe that for every g ∈ Aff(n) and

A ∈ cb(Rn), the set gA = {ga | a ∈ A} belongs to cb(Rn), i.e., cb(Rn)

is an invariant subset of 2Rn and thus the restriction of the Aff(n)-action

on cb(Rn) is continuous. We will prove in Theorem 3.3 that this action is

proper. First we prove the following two technical lemmas.

Lemma 3.1. Let A ∈ cb(Rn) and let x0 ∈ A be such that N(x0, 2ε) ⊂ A

for certain ε > 0. If C ∈ O(A, ε) then N(x0, ε) ⊂ C.

Proof. Suppose the contrary is true, i.e., that there exists C ∈ O(A, ε) such

that N(x0, ε) 6⊂ C. Choose x ∈ N(x0, ε) \ C. Since C is compact, there

exists z ∈ C with d(x, z) = d(x,C). Let H be the hyperplane through z

in Rn orthogonal to the ray
→
xz. Since C is convex, it lies in the halfspace

determined by H which does not contain the point x. Let a be the inter-

section point of the ray
→
zx with the boundary ∂N(x0, 2ε) ⊂ A. Evidently,

d(a, x0) = 2ε and

d(a, z) = d(a,H) ≤ d(a, C) ≤ dH(A,C) < ε.

Since d(x0, x) < ε the triangle inequality implies that

ε > d(a, z) > d(a, x) ≥ d(a, x0)− d(x0, x) > 2ε− ε = ε.

This contradiction proves the lemma. �

Observe that cb(Rn) is not closed in cc(Rn). However, we have the fol-

lowing lemma:

Lemma 3.2. Let A ∈ cb(Rn) and x0 ∈ A be such that N(x0, 2ε) ⊂ A for

certain ε > 0. Then O(A, ε), the closure of O(A, ε) in cb(Rn), is compact.

Proof. First we observe that O(A, ε) is contained in cc(K) for some com-

pact convex subset K ⊂ Rn, where cc(K) stands for the hyperspace of all

compact convex subsets of K. By [21], cc(K) is compact, and hence, the

closure of O(A, ε) in cc(K), denoted by [O(A, ε)], is also compact. So, it is

enough to prove that [O(A, ε)] is contained in cb(Rn).

Let (Dm)m∈N ⊂ O(A, ε) be a sequence of compact convex bodies converg-

ing to some D ∈ cc(K). According to Lemma 3.1, N(x0, ε) ⊂ Dm for every

m ∈ N. Suppose that N(x0, ε) 6⊂ D. Pick an arbitrary point x ∈ N(x0, ε)\D
and let η = d(x,D) > 0. Since x ∈ Dm for each m ∈ N, it is clear that

dH(Dm, D) ≥ η. This means that the sequence (Dm)m∈N cannot converge

to D, a contradiction. This contradiction proves that N(x0, ε) is contained

in D, and therefore, D has a nonempty interior and then D ∈ cb(Rn).
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Thus, [O(A, ε)] is a compact set contained in cb(Rn) which yields that

O(A, ε) = [O(A, ε)], and hence, O(A, ε) is compact.

�

Theorem 3.3. Aff(n) acts properly on cb(Rn).

Proof. Let A ∈ cb(Rn) and assume that x0 ∈ A and ε > 0 are such that

N(x0, 2ε) ⊂ A. We claim that O(A, ε) is a small neighborhood of A.

Indeed, let B ∈ cb(Rn). Since B has a nonempty interior, there is a

point z0 ∈ B and δ > 0 such that N(z0, 2δ) ⊂ B. We will prove that the

transporter

Γ = {g ∈ Aff(n) | gO(A, ε) ∩O(B, δ) 6= ∅}

has compact closure in Aff(n).

It is sufficient to prove that Γ, viewed as a subset of Rn×Rn2
, is bounded

and its closure in Aff(n) coincides with the one in Rn × Rn2
.

For every x = (x1, . . . , xn) ∈ Rn, let ‖x‖∞ =
n

max
i=1
|xi|. There exists

M > 0 such that, if C ∈ O(A, ε) ∪O(B, δ), then

(3.2) ‖c‖∞ ≤M for all c ∈ C.

In particular,

diamC = sup
c,c′∈C

‖c− c′‖∞ ≤ 2M.

Take an arbitrary element µ ∈ Γ. There exist A′ ∈ O(A, ε) and B′ ∈ O(B, δ)

with µA′ = B′. Since µ is an affine transformation, there are u ∈ Rn and

σ ∈ GL(n) such that µ(x) = u+σ(x) for all x ∈ Rn. Let (σij) be the matrix

representing σ with respect to the canonical basis of Rn, and consider (σij)

as a point in Rn2
.

Since µA′ = B′ ∈ O(B, δ), according to inequality (3.2), diamµA′ ≤ 2M.

Observe that µA′ = σA′ + u, and hence, diamσA′ = diamµA′ ≤ 2M . Let

ξi = (0, . . . , 0, ε/2, 0, . . . , 0) ∈ Rn,

where ε/2 is the i-th coordinate. Then, by Lemma 3.1, ξi +x0 ∈ N(x0, ε) ⊂
A′ and −ξi + x0 ∈ N(x0, ε) ⊂ A′. Since diamσA′ ≤ 2M , we get:

‖2σ(ξi)‖∞ = ‖σ(2ξi)‖∞ = ‖σ((ξi + x0)− (−ξi + x0))‖∞
= ‖σ(ξi + x0)− σ(−ξi + x0)‖∞ ≤ 2M,

and thus, ‖σ(ξi)‖∞ ≤M .

However, σ(ξi) = (σ1iε/2, . . . , σniε/2), and therefore, |σjiε/2| ≤ M for

every i = 1, . . . , n and j = 1, . . . , n. Thus, |σji| < 2M/ε.
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Next, according to (3.2), for every a = (a1, . . . , an) ∈ A′ one has ‖a‖∞ ≤
M . Then we get:

‖σ(a)‖∞ =
n

max
i=1

∣∣∣ n∑
j=1

σijaj

∣∣∣ ≤ n∑
i=1

2M

ε
‖a‖∞ ≤

2nM2

ε
.

On the other hand, µ(a) ∈ B′, which yields that

M ≥ ‖µ(a)‖∞ = ‖u+ σ(a)‖∞ ≥ ‖u‖∞ − ‖σ(a)‖∞ ≥ ‖u‖∞ −
2nM2

ε
.

This implies that ‖(u)‖∞ ≤M + 2nM2

ε
, and therefore, Γ, viewed as a subset

of Rn × Rn2
, is bounded.

In order to complete the proof, it remains only to show that the closure

of Γ in Aff(n) coincides with its closure in Rn×Rn2
. Observe that here Rn2

represents the space of all real n×n-matrices, i.e., Rn2
represents the space of

all linear transformations from Rn into itself. Therefore, an element λ ∈ Rn×
Rn2

represents a map which is the composition of a linear transformation

followed by a translation. In this case, λ is an affine transformation iff it is

surjective.

Let (λm)m∈N ⊂ Γ be a sequence of affine transformations converging

to some element λ ∈ Rn × Rn2
. We need to prove that λ ∈ Aff(n). Since

λm ∈ Γ, there exist Am ∈ O(A, ε) and Bm ∈ O(B, δ) such that λmAm = Bm.

According to Lemma 3.2, the closures O(A, ε) and O(B, δ) are compact.

Hence, we can assume that Am converges to some A0 ∈ O(A, ε) and Bm

converges to some B0 ∈ O(B, δ). Then the equality λmAm = Bm yields that

λA0 = B0. Since B0 has a nonempty interior, we infer that dimB0 = n,

and hence, the dimension of the image λ(Rn) also equals n. Thus, λ(Rn) is

an n-dimensional hyperplane in Rn which is possible only if λ(Rn) = Rn.

Thus, λ is surjective, as required. This completes the proof. �

3.2. A convenient global slice for cb(Rn). A well-known result of F. John

[17] (see also [15]) in affine convex geometry states that for each A ∈ cb(Rn)

there is a unique minimal-volume ellipsoid l(A) containing A (respectively, a

maximal-volume ellipsoid j(A) contained in A). Nowadays j(A) is called the

John ellipsoid of A while l(A) is called its Löwner ellipsoid. We will denote

by L(n) (resp., by J(n)) the subspace of cb(Rn) consisting of all convex bod-

ies A ∈ cb(Rn) for which the Euclidean unit ball Bn is the Löwner ellipsoid

(resp., the John ellipsoid). By E(n) we will denote the subset of cb(Rn) con-

sisting of all ellipsoids. Below we shall consider the map l : cb(Rn)→ E(n)

that sends a convex body A ∈ cb(Rn) to its minimal-volume ellipsoid l(A).

We will call l the Löwner map.
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Proposition 3.4. L(n) satisfies the following four properties:

(a) L(n) is O(n)-invariant.

(b) The saturation Aff(n)
(
L(n)

)
coincides with cb(Rn).

(c) If gL(n) ∩ L(n) 6= ∅ for some g ∈ Aff(n), then g ∈ O(n).

(d) L(n) is compact.

Proof. First we prove the following

Claim. The Löwner map l : cb(Rn) → E(n) is Aff(n)-equivariant, i.e.,

l(gA) = gl(A) for every g ∈ Aff(n) and A ∈ cb(Rn).

Assume the contrary is true, i.e., that there exist A ∈ cb(Rn) and g ∈
Aff(n) such that l(gA) 6= gl(A). Clearly, gl(A) is an ellipsoid containing

gA. Since the minimal volume ellipsoid of g(A) is unique, we infer that

vol(gl(A)) > vol(l(gA)). By the same argument, vol(g−1l(gA)) > vol(l(A)).

Now we apply a well-known fact that each affine transformation preserves

the ratio of volumes of any pair of compact convex bodies. Thus we obtain:

vol(l(A))

vol(A)
=

vol(gl(A))

vol(gA)
>

vol(l(gA))

vol(gA)
=

vol(g−1l(gA))

vol(A)
>

vol(l(A))

vol(A)
.

This contradiction proves the claim.

(a) Let g ∈ O(n) and A ∈ L(n). The above claim implies that l(gA) =

gl(A) = gBn = Bn, i.e., gA ∈ L(n), which means that L(n) is O(n)-

invariant.

(b) Let A ∈ cb(Rn). There exists g ∈ Aff(n) such that l(A) = gBn. Accord-

ing to the above claim we have:

Bn = g−1l(A) = l(g−1A).

Then, g−1A ∈ L(n) and A = g(g−1A). This proves that Aff(n)
(
L(n)

)
=

cb(Rn).

(c) If there exist g ∈ Aff(n) and A ∈ L(n) such that gA ∈ L(n), then

Bn = l(gA) = gl(A) = gBn.

This yields that g ∈ O(n).

(d) Clearly, L(n) ⊂ cc(Bn). Since cc(Bn) is compact (in fact, it is home-

omorphic to the Hilbert cube [21, Theorem 2.2]), it suffices to show that

L(n) is closed in cc(Bn).

Let (Ak)k∈N ⊂ L(n) be a sequence converging to A ∈ cc(Bn). We will

prove that A ∈ L(n). To this end, we shall prove first that A has nonempty

interior. If not, there exist an (n− 1)-dimensional hyperplane H ⊂ Rn such

that A ⊂ H. Let E ′ ⊂ H be an (n − 1)-dimensional ellipsoid containing A

in its interior (with respect to H). For any r > 0, consider the line segment
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Tr of length r which is orthogonal to H and passes trough the center of E ′.

Let r > 0 be small enough that the n-dimensional ellipsoid E generated by

E ′ and Tr has the volume less than vol(Bn). Since A lies in the interior of

E, there exist δ > 0 such that N(A, δ) ⊂ E. Now, we use the fact that (Ak)

converges to A to find m0 ∈ N such that Am0 ⊂ N(A, δ) ⊂ E. Thus, E is

an ellipsoid containing Am0 and then

vol(Bn) = vol (l(Am0)) < vol(E) < vol(Bn).

This contradiction proves that A has nonempty interior.

Consequently, l(A) is defined and we have to show that l(A) = Bn.

Suppose that l(A) 6= Bn. Since Ak ⊂ Bn for every k ∈ N, it follows that

A ⊂ Bn. Hence, by uniqueness of the minimal volume ellipsoid, vol(l(A)) <

vol(Bn). Let L be an ellipsoid concentric and homothetic with l(A) with

ratio > 1 and vol(L) < vol(Bn). As l(A) is contained in the interior of L,

the distance dH(∂L, ∂l(A)) = ε is positive. Consider U = N
(
∂l(A), ε

)
, the

ε-neighborhood of the boundary ∂l(A) in Rn. Since (Ak)k∈N converges to

A and all the sets Ak are convex, the sequence (∂Ak)k∈N converges to ∂A.

Therefore, there exists k0 ≥ 1 such that ∂Ak0 ⊂ U . The convexity of Ak0
implies that Ak0 ⊂ L, and hence,

vol
(
l(Ak0)

)
≤ vol(L) < vol(Bn) = vol

(
l(Ak0)

)
.

This contradiction proves that A ∈ L(n), and hence, L(n) is closed in

cc(Bn). �

Remark 3.5. The first three assertions of Proposition 3.4 are easy modi-

fications of those in [6, Proof of Theorem 4], while the forth one provides

a new way of proving Macbeath’s result on compactness of the orbit space

cb(Rn)/Aff(n) (see Corollary 3.7(1)).

Theorem 3.6. (1) The Löwner map l : cb(Rn) → E(n) is an Aff(n)-

equivariant retraction with L(n) = l−1(Bn).

(2) L(n) is a compact global O(n)-slice for the proper Aff(n)-space

cb(Rn).

Proof. (1) In the proof of Proposition 3.4 we showed that l : cb(Rn)→ E(n)

is Aff(n)-equivariant. Clearly, it is a retraction. As to the continuity of l, it

is a standard consequence of the above four properties in Proposition 3.4,

well known in transformation groups (see [12, Ch. II, Theorem 4.2 and The-

orem 4.4] for compact group actions and [23] for locally compact proper

group actions). However, using the compactness of L(n) we shall give here

a direct proof of this fact.
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For, let (Xm)∞m=1 be a sequence in cb(Rn) that converges to a point

X ∈ cb(Rn), i.e., Xm  X. We must show that l(Xm) l(X). Assume the

contrary is true. Then there exist a number ε > 0 and a subsequence (Ak)

of the sequence (Xm) such that dH
(
l(Ak), l(A)

)
≥ ε for all k = 1, 2, . . . ,

where dH denotes the Hausdorff metric.

By property (b) of Proposition 3.4, there are g, gk ∈ Aff(n), k = 1, 2, . . . ,

such that Ak = gkSk and A = gP for some P, Sk ∈ L(n). Due to compact-

ness of L(n), without loss of generality, one can assume that Sk  S for

some S ∈ L(n). Since Aff(n) acts properly on cb(Rn) (see Theorem 3.3), the

points S and P have neighborhoods US and UP , respectively, such that the

transporter 〈US, UP 〉 has compact closure. Since Sk  S and g−1gkSk  P ,

it then follows that there is a natural number k0 such that g−1gk ∈ 〈US, UP 〉
for all k ≥ k0. Consequently, the sequence (g−1gk) has a convergent sub-

sequence. Again, it is no loss of generality to assume that g−1gk  h for

some h ∈ Aff(n). This implies that g−1gkSk  hS, which together with

g−1gkSk  P yields that hS = P . But S and P belong to L(n), and hence,

property (c) of Proposition 3.4 yields that h ∈ O(n). Since gk  gh, then

we get that

l(Ak) = l(gkSk) = gkl(Sk) = gkBn  ghBn = gBn = gl(S) = l(gS) = l(A),

which contradicts to the inequality dH
(
l(Ak), l(A)

)
≥ ε, k = 1, 2, . . . .

Hence, l(Xm) l(X), as required.

(2) Compactness of L(n) was proved in Proposition 3.4(d). Since E(n)

is the Aff(n)-orbit of the point Bn ∈ cb(Rn) and O(n) is the stabilizer

of Bn, one has the Aff(n)-homeomorphism E(n) ∼= Aff(n)/O(n) (see [23,

Proposition 1.1.5]). This, together with the statement (1), yields an Aff(n)-

equivariant map f : cb(Rn) → Aff(n)/O(n) such that L(n) = f−1
(
O(n)

)
.

Thus, L(n) is a global O(n)-slice for cb(Rn), as required.

�

Corollary 3.7. (1) (Macbeath [20]) The Aff(n)-orbit space cb(Rn)/Aff(n)

is compact.

(2) The two orbit spaces L(n)/O(n) and cb(Rn)/Aff(n) are homeomor-

phic.

Proof. Let π : L(n) → cb(Rn)/Aff(n) be the restriction of the orbit map

cb(Rn) → cb(Rn)/Aff(n). Then π is continuous and it follows from Propo-

sition 3.4(b) that π is onto. This already implies the first assertion if we

remember that L(n) is compact (see Proposition 3.4(d)).
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Further, for A,B ∈ L(n), it follows from Proposition 3.4(c) that π(A) =

π(B) iff A and B have the same O(n)-orbit. Hence, π induces a continuous

bijective map p : L(n)/O(n)→ cb(Rn)/Aff(n). Since L(n)/O(n) is compact

we then conclude that p is a homeomorphism.

�

In Theorem 5.11 we will prove that the orbit space L(n)/O(n) is home-

omorphic to the Banach-Mazur compactum BM(n). This, in combination

with Corollary 3.7 implies the following:

Corollary 3.8. The Aff(n)-orbit space cb(Rn)/Aff(n) is homeomorphic to

the Banach-Mazur compactum BM(n).

Corollary 3.9. (1) There exists anO(n)-equivariant retraction r : cb(Rn)→
L(n) such that r(A) belongs to the Aff(n)-orbit of A.

(2) The diagonal product of the two retractions r : cb(Rn) → L(n) and

l : cb(Rn) → E(n) is an O(n)-equivariant homeomorphism cb(Rn) ∼=O(n)

L(n)× E(n).

Proof. (1) Recall that O(n) is a maximal compact subgroup of Aff(n).

According to the structure theorem (see [16, Ch. XV, Theorem 3.1]), there

exists a closed subset T ⊂ Aff(n) such that gTg−1 = T for every g ∈ O(n),

and the multiplication map

(3.3) (t, g) 7→ tg : T ×O(n)→ Aff(n)

is a homeomorphism. In our case it is easy to see that T can be taken as the

set of all products AS, where A is a translation and S is a non-degenerate

symmetric (or self-adjoint) positive operator. This follows easily from two

standard facts in Linear Algebra: (1) each a ∈ Aff(n) is uniquely repre-

sented as the composition of a translation t ∈ Rn and an invertible operator

g ∈ GL(n), (2) due to the polar decomposition theorem, every invertible

operator g ∈ GL(n) can uniquely be represented as the composition of

a non-degenerate symmetric positive operator and an orthogonal operator

(see, e.g., [18, sections 2.3 and 2.4]).

Now we define the required O(n)-equivariant retraction r : cb(Rn) →
L(n).

Let f : Aff(n) → E(n) be defined by f(g) = gBn. Then f induces an

Aff(n)-equivariant homeomorphism f̃ : Aff(n)/O(n) → E(n) [23, Proposi-

tion 1.1.5] and it is the composition of the following two maps:

Aff(n)
π→ Aff(n)/O(n)

f̃→ E(n)
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where π is the natural quotient map. Due to compactness of O(n), π is

closed, and hence, f being the composition of two closed maps is itself

closed.

This yields that the restriction f |T : T → E(n) is a homeomorphism.

Moreover, this homeomorphism is O(n)-equivariant if we let O(n) act on T

by inner automorphisms and on E(n) by the action induced from cb(Rn).

Denote by ξ : E(n)→ T the inverse map f−1. Then we have the following

characteristic property of ξ:

(3.4) [ξ(C)]−1C = Bn for all C ∈ E(n).

Next, we define

r(A) = [ξ(l(A))]−1A for every A ∈ cb(Rn).

Clearly, r depends continuously on A ∈ cb(Rn).

Since l
(
r(A)

)
= l
(
[ξ(l(A))]−1A

)
= [ξ(l(A))]−1l(A) and, since by (3.4),

[ξ(l(A))]−1l(A) = Bn, we infer that r(A) ∈ L(n). If A ∈ L(n), then l(A) =

Bn and r(A) = [ξ(l(A))]−1A = [ξ(Bn)]−1A = 1 · A = A. Thus, r is a well-

defined retraction on L(n).

Let us check that it is O(n)-equivariant. For, let g ∈ O(n) and A ∈
cb(Rn). Then r(gA) = [ξ(l(gA))]−1gA = [ξ(gl(A))]−1gA. Due to equiv-

ariance of ξ, one has ξ(gl(A)) = gξ(l(A))g−1, and hence, [ξ(gl(A))]−1 =

g[ξ(l(A))]−1g−1. Consequently,

r(gA) =
(
g[ξ(l(A))]−1g−1

)
gA = g

(
[ξ(l(A))]−1A

)
= gr(A),

as required. Thus, r : cb(Rn)→ L(n) is an O(n)-retraction, and clearly, r(A)

belongs to the Aff(n)-orbit of A.

(2) Next we define

ϕ(A) =
(
r(A), l(A)

)
for every A ∈ cb(Rn).

Then ϕ is the desired O(n)-equivariant homeomorphism cb(Rn) → L(n) ×
E(n) with the inverse map given by ϕ−1

(
(C,E)

)
= ξ(E)C for every pair

(C,E) ∈ L(n)× E(n).

�

Corollary 3.10. (1) E(n) is an O(n)-AR.

(2) E(n) is homeomorphic to the Euclidean space Rn(n+3)/2.

Proof. (1) Follows immediately from Theorem 3.6 and from the fact that

cb(Rn) is an O(n)-AR [8, Corollary 4.8].
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(2) As we observed above, E(n) is homeomorphic to the quotient space

Aff(n)/O(n) (see [23, Proposition 1.1.5]). Consequently, one should prove

that Aff(n)/O(n) is homeomorphic to Rn(n+3)/2.

Since Aff(n) is the semidirect product of Rn and GL(n), as a topo-

logical space Aff(n)/O(n) is homeomorphic to Rn×GL(n)/O(n). The RQ-

decomposition theorem in Linear Algebra states that every invertible matrix

can uniquely be represented as the product of an orthogonal matrix and an

upper-triangular matrix with positive elements on the diagonal (see, e.g.,

[13, Fact 4.2.2 and Exercise 4.3.29]). This easily yields that GL(n)/O(n)

is homeomorphic to R(n+1)n/2, and hence, Aff(n)/O(n) is homeomorphic to

Rp, where p = n+ (n+ 1)n/2 = n(n+ 3)/2.

�

In Section 5 we will prove that L(n) is homeomorphic to the Hilbert cube

(see Corollary 5.9). This, in combination with Corollaries 3.9 and 3.10, yields

the following result, which is one of the main results of the paper:

Corollary 3.11. cb(Rn) is homeomorphic to Q× Rn(n+3)/2.

Remark 3.12. Using the maximal-volume ellipsoids instead of the minimal-

volume ellipsoids, one can prove in a similar way that the subset J(n),

defined at the beginning of this subsection, is also a global O(n)-slice for

cb(Rn). However, it follows from a result of H. Abels [1, Lemma 2.3] that the

two global O(n)-slices J(n) and L(n) are equivalent in the sense that there

exists an Aff(n)-equivariant homeomorphism f : cb(Rn)→ cb(Rn) such that

f
(
L(n)

)
= J(n). Consequently, all the results stated in terms of L(n) have

also their dual analogs in terms of J(n), which can be proven by trivial

modification of our proofs of the corresponding “L(n)-results”.

4. The hyperspace M(n)

Let us denote by M(n) the O(n)-invariant subspace of cc(Rn) consisting

of all A ∈ cc(Rn) such that max
a∈A
‖a‖ = 1. Thus, M(n) consists of all compact

convex subsets of Bn which intersect the boundary sphere Sn−1.
It is evident that M(n) is closed in cc(Bn) ⊂ cc(Rn). Due to compactness

of cc(Bn) (a well-known fact) it then follows that M(n) is compact as well.

The importance of M(n) lies in the property that cc(Rn) is the open cone

over it (see Section 7). In this section we will prove that M(n) is also homeo-

morphic to the Hilbert cube (Corollary 4.13) and its orbit space M(n)/O(n)

is homeomorphic to the Banach-Mazur compactum BM(n) (Theorem 4.16).
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Let us recall that a G-space X is called strictly G-contractible if there

exists a G-homotopy F : X × [0, 1] → X and a G-fixed point a ∈ X such

that F (x, 0) = x for all x ∈ X and F (x, t) = a if and only if t = 1 or x = a.

Lemma 4.1. M(n) is strictly O(n)-contractible to its only O(n)-fixed point

Bn.

Proof. The map F : M(n)× [0, 1]→M(n) defined by

F (A, t) = (1− t)A+ tBn

is the desired O(n)-contraction. �

Consider the map ν : cc(Rn)→ [0,∞) defined by

(4.1) ν(A) = max
a∈A
‖a‖, A ∈ cc(Rn).

Lemma 4.2. ν is a uniformly continuous O(n)-invariant map.

Proof. Let ε > 0, A,B ∈ cc(Rn) and suppose that dH(A,B) < ε. Let a ∈ A
be such that ν(A) = ‖a‖. Then there exists a point b ∈ B with ‖a− b‖ < ε.

Since ‖b‖ ≤ ν(B) we have the following inequalities:

ε > ‖a− b‖ ≥ ‖a‖ − ‖b‖ ≥ ν(A)− ν(B).

Similarly, we can prove that ν(B) − ν(A) < ε, and hence, ν is uniformly

continuous.

Now, if g ∈ O(n) then ‖gx‖ = ‖x‖ for every x ∈ Rn. Thus,

ν(gA) = max
a′∈gA

‖a′‖ = max
a∈A
‖ga‖ = max

a∈A
‖a‖ = ν(A).

This proves that ν is O(n)-invariant, as required.

�

Lemma 4.3. M(n) is an O(n)-AR with a unique O(n)-fixed point, Bn.

Proof. By [8, Corollary 4.8], cc(Rn) is an O(n)-AR. Hence, the complement

cc(Rn) \ {0} is an O(n)-ANR. The map r : cc(Rn) \ {0} →M(n) defined by

the rule:

(4.2) r(A) =
1

ν(A)
A

is an O(n)-retraction, where ν is the map defined in (4.1). Thus M(n), being

an O(n)-retract of an O(n)-ANR, is itself an O(n)-ANR. On the other hand,

it was shown in Lemma 4.1 that M(n) is O(n)-contractible to its point Bn.

Since every O(n)-contractible O(n)-ANR space is O(n)-AR (see [3]) we

conclude that M(n) is an O(n)-AR. This completes the proof. �
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The following lemma will be used several times throughout the rest of

the paper:

Lemma 4.4. Let p1, . . . , pk ∈ Rn be a finite number of points. Let K ⊂
O(n) be a closed subgroup which acts non-transitively on the unit sphere

Sn−1. Then the boundary ∂D of the convex hull

D = conv
(
K(p1) ∪ · · · ∪K(pk)

)
does not contain an (n − 1)-dimensional elliptic domain, i.e., ∂D does not

contain an open subset V ⊂ ∂D which at the same time is an open connected

subset of some (n− 1)-dimensional ellipsoid surface lying in Rn.

Proof. Assume the contrary, that there exists an open subset V ⊂ ∂D of the

boundary ∂D which is an (n − 1)-dimensional elliptic domain. Recall that

a convex body A ⊂ Rn is called strictly convex, if every boundary point

a ∈ ∂A is an extreme point; that is to say that the complement A \ {a}
is convex. Since every ellipsoid in Rn is strictly convex, we conclude that

every point v ∈ V is an extreme point for D too. This is easy to show.

Indeed, suppose that there are two distinct points b, c ∈ D such that v

belongs to the relative interior of the line segment [b, c] = {λb + (1 − λ)c |
λ ∈ [0, 1]}. Since v is a boundary point of D, it then follows that the whole

segment [b, c] lies in the boundary ∂D. Next, since V is open in ∂D, we infer

that for b and c sufficiently close to v, the line segment [b, c] is contained in

V . However, this is impossible because V is an elliptic domain.

Thus, we have proved that every point v ∈ V is an extreme point for

D. Next, since D is the convex hull of the set
k⋃

1=1

K(pi), each extreme point

of D lies in
k⋃

1=1

K(pi) (see, e.g., [29, Corollary 2.6.4]). This implies that V

is contained in the union
k⋃

1=1

K(pi). Further, due to connectedness of V , it

then follows that V is contained in only one K(pi). Next, let us show that

this is impossible.

Indeed, since K(pi) lies on the (n − 1)-sphere ∂N(0, ‖pi‖) centered at

the origin and having the radius ‖pi‖, the set V should be a domain of this

sphere. As K(pi) is a homogeneous compact space, there exists a finite cover

{V1, . . . , Vm} of K(pi), where each Vj is homeomorphic to V . Then, by the

Domain Invariance Theorem (see, e.g., [25, Ch. 4, Section 7, Theorem 16]),

each Vj is open in the sphere ∂N(0, ‖pi‖). Hence, the union V1 ∪ · · · ∪ Vm =

K(pi) is open in the sphere ∂N(0, ‖pi‖). But K(pi) is also compact, and

therefore, closed in ∂N(0, ‖pi‖). Thus K(pi) is an open and closed subset
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of the connected space ∂N(0, ‖pi‖), and consequently, K(pi) = ∂N(0, ‖pi‖).
This yields that K acts transitively on the unit sphere Sn−1, which is a

contradiction. �

The Fell topology in cc(Rn) is the topology generated by the sets of the

form:

U− = {A ∈ cc(Rn) | A ∩ U 6= ∅} and

(Rn \K)+ = {A ∈ cc(Rn) | A ⊂ Rn \K},
where U ⊂ Rn is open and K ⊂ Rn is compact.

It is well known that the Fell topology and the Hausdorff metric topology

coincide in cc(Rn) (see, e.g., [24, Remark 2]). In particular, both topologies

coincide in cb(Rn). This fact will be used in the proof of the following lemma:

Lemma 4.5. Let T ∈ cb(Rn) be a convex body and H ⊂ cb(Rn) a subset

such that for every A ∈ H, the intersection A ∩ T has nonempty interior.

Then the map υ : H → cb(Rn) defined by

υ(A) = A ∩ T, A ∈ H

is continuous.

Proof. It is enough to show that υ−1(U−) and υ−1
(
(Rn \K)+

)
are open in

H for every open U ⊂ Rn and compact K ⊂ Rn.

First, suppose that U ⊂ Rn is open and A ∈ υ−1(U−). Then U∩(A∩T ) 6=
∅. Since U is open and A ∩ T is a convex body, there exists a point x0 in

the interior of A ∩ T such that x0 ∈ U . So, one can find δ > 0 satisfying

N(x0, 2δ) ⊂ U ∩ (A ∩ T ).

In accordance with Lemma 3.1, if C ∈ O(A, δ)∩H then N(x0, δ) ⊂ C. Since

x0 ∈ U ∩ T , we conclude that U ∩ υ(C) = U ∩ (C ∩ T ) 6= ∅. This proves

that O(A, δ) ∩H ⊂ υ−1(U−), and hence, υ−1(U−) is open in H.

Consider now a compact subset K ⊂ Rn and suppose A ∈ H is such

that υ(A) ∩K = ∅. If K ∩ T = ∅ then H = υ−1
(
(Rn \K)+

)
which is open

in H. If K ∩ T 6= ∅ then we define

η = inf {d(a, x) | a ∈ A, x ∈ K ∩ T}.

Since (A ∩ T ) ∩ K = ∅, we have that η > 0. Let C ∈ O(A, η) ∩ H and

suppose that υ(C) meets K. Then there exists a point x0 ∈ C ∩ T ∩ K.

Since C belongs to the η-neighborhood of A, we can find a point a ∈ A such

that d(a, x0) < η, contradicting to the choice of η. Then we conclude that

O(A, η) ∩H ⊂ υ−1
(
(Rn \K)+

)
,

and hence, υ−1
(
(Rn \K)+

)
is open in H. This completes the proof. �
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Denote by M0(n) the complement M(n) \ {Bn}.

Proposition 4.6. For each closed subgroup K ⊂ O(n) that acts non-

transitively on the unit sphere Sn−1 and each ε > 0, there exists a K-

equivariant map χε : M(n) → M0(n) which is ε-close to the identity map

of M(n). In particular, χε
(
M(n)K

)
⊂M0(n)K .

Proof. Let r : cc(Rn) \ {0} → M(n) be the O(n)-equivariant retraction

defined in (4.2). Since M(n) is compact, one can find a real 0 < δ < ε/2

such that dH
(
r(A), A

)
< ε/2 for all A belonging to the δ-neighborhood of

M(n) in cc(Rn) \ {0}.
Chose a convex polyhedron P ⊂ Bn with nonempty interior, δ/4-close

to Bn such that all the vertices p1, . . . , pk of P lie on the unit sphere Sn−1 =

∂Bn. Then the convex hull

T = conv
(
K(p1) ∪ · · · ∪K(pk)

)
is a compact convex K-invariant subset of Rn. By Lemma 4.4, the boundary

∂T does not contain an (n− 1)-dimensional elliptic domain. Furthermore,

(4.3) dH(Bn, T ) ≤ dH(Bn, P ) < δ/4.

Let h : M(n)→M(n) be defined as follows:

h(A) = {x ∈ Bn | d(x,A) ≤ δ/2}, for every A ∈M(n).

Clearly, h(A) ∩ T is a nonempty set with a nonempty interior.

Then setting

χ′(A) = h(A) ∩ T

we obtain a map χ′ : M(n)→ cc(Rn). Since T is a K-fixed point of cc(Rn),

we see that χ′ is K-equivariant.

Continuity of χ′ follows from the one of h and Lemma 4.5.

We claim that for any A ∈ M(n), χ′(A) is not a closed Euclidean ball

centered at the origin.

Indeed, if h(A) ⊂ T then h(A) 6= Bn since T is strictly contained in Bn.

In this case χ′(A) = h(A) ∩ T = h(A), and hence, χ′(A) ∈M(n). However,

the only Euclidean ball centered at the origin that belongs to M(n) is Bn.

But χ′(A) = h(A) 6= Bn.

If h(A) is not contained in T , then the boundary of χ′(A) contains a

domain lying in the boundary ∂T . Since the boundary ∂T does not contain

an (n−1)-dimensional elliptic domain (as shown in Lemma 4.4), we conclude

that χ′(A) is not an ellipsoid. In particular, χ′(A) is not a Euclidean ball

centered at the origin, and the claim is proved.
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Now we assert that the composition χ = r ◦ χ′ is the desired map.

Indeed, r(A) = Bn if and only if A is a Euclidean ball centered at the

origin. Since χ′(A) is not a Euclidean ball centered at the origin, we infer

that χ(A) = r(χ′(A)) 6= Bn for every A ∈ M(n). Thus χ : M(n) → M0(n)

is a well-defined map. It is continuous and K-equivariant because χ′ and r

are so.

Now, if x ∈ χ′(A) then x ∈ h(A). Hence, d(x,A) ≤ δ/2 < δ and χ′(A) ⊂
N(A, δ). On the other hand, if a ∈ A ⊂ Bn, then due to (4.3) there exists a

point x ∈ T such that d(x, a) < δ/4 < δ/2. Therefore, x ∈ h(A)∩T = χ′(A),

and hence, A ⊂ N
(
χ′(A), δ/2

)
. This proves that dH

(
A,χ′(A)

)
< δ.

By the choice of δ the last inequality implies that dH
(
r(χ′(A)), χ′(A)

)
≤

ε/2. Then for all A ∈M(n) we have:

dH
(
χ(A), A

)
≤ dH

(
χ(A), χ′(A)

)
+ dH

(
χ′(A), A

)
= dH

(
r(χ′(A)), χ′(A)

)
+ dH

(
χ′(A), A

)
< ε/2 + δ < ε/2 + ε/2 = ε.

This proves that χ is ε-close to the identity map of M(n), and the proof is

now complete.

�

Observe that the induced action of O(n) on cc(Rn) is isometric with

respect to the Hausdorff metric. In particular, for every closed subgroup

K ⊂ O(n), the Hausdorff metric on cc(Rn) is K-invariant.

Let d∗H be the metric on M(n)/K induced by the Hausdorff metric on

M(n) as defined in equation (2.1):

d∗H
(
K(A), K(B)

)
= inf

k∈K
dH(A, kB), A,B ∈M(n).

Corollary 4.7. LetK ⊂ O(n) be a closed subgroup that acts non-transitively

on the unit sphere Sn−1 then

(1) the singleton {Bn} is a Z-set in M(n)K ,

(2) the class of {Bn} is a Z-set in M(n)/K.

Proof. The first statement follows directly from Proposition 4.6. For the

second statement take ε > 0. By Proposition 4.6, there exists a K-map

χε : M(n) → M0(n) such that dH(A,χ(A)) < ε for every A ∈ M(n). This

induces a continuous map χ̃ε : M(n)/K →M0/K as follows:

χ̃ε
(
K(A)

)
= π

(
χε(A)

)
= K

(
ξε(A)

)
, A ∈M(n),
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where π : M(n) → M(n)/K is the K-orbit map. According to inequal-

ity (2.2) we have:

d∗H
(
K(χε(A)), K(A)

)
≤ dH

(
χε(A), A

)
< ε

and thus, χ̃ε is ε-close to the identity map of M(n)/K.

On the other hand, since {χε(A)} 6= {Bn} = K(Bn) for every A ∈M(n),

we conclude that

χ̃ε
(
M(n)/K

)
∩ {Bn} = ∅,

which proves that the class of {Bn} is a Z-set on M(n)/K. �

Now, we shall give a sequence of lemmas and propositions culminating

in Corollary 4.15

Denote by R(n) the subspace of M(n) consisting of all A ∈ M(n) such

that the contact set A ∩ Sn−1 has empty interior in Sn−1.
For every A ∈ M(n), the intersection A ∩ Sn−1 is nonempty, and there-

fore, there exists a point a ∈ A ∩ Sn−1. If O(n)A is the O(n)-stabilizer of

A then O(n)A(a) ⊂ A ∩ Sn−1. Therefore, if A is different from Bn, the

subset O(n)A(a) should be different from Sn−1, and thus, O(n)A acts non-

transitively on the sphere Sn−1.

Lemma 4.8. Let ε > 0. For each D ∈ M0(n) there exist A ∈ R(n) such

that dH(D,A) < ε and the O(n)-stabilizer O(n)A coincides with the O(n)-

stabilizer O(n)D.

Proof. According to Theorem 2.2, there is a real 0 < η < ε such that if

dH(C,D) < η then the stabilizer O(n)C is conjugate to a subgroup of O(n)D.

Let p1, . . . , pk ∈ D be such that the convex hull P = conv
(
{p1, . . . , pk}

)
belongs to M(n) (it is enough to chose one of the pi’s lying in ∂D ∩ Sn−1)
and dH(D,P ) < η. Next, we define

A = conv
(
O(n)D(p1) ∪ · · · ∪O(n)D(pk)

)
.

Clearly, A ∈M(n) and

dH(D,A) ≤ dH(D,P ) < η < ε.

Since O(n)D acts non-transitively on the sphere Sn−1, we can apply

Lemma 4.4, according to which the boundary ∂A does not contain an (n−1)-

elliptic domain. In particular, the contact set ∂A∩ Sn−1 has empty interior

in Sn−1, i.e., A ∈ R(n).

Because of the choice of η the stabilizer O(n)A is conjugate to a subgroup

of O(n)D. On the other hand, A is an O(n)D-invariant subset, i.e., O(n)D ⊂
O(n)A. This implies that O(n)A = O(n)D, as required. �
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The following lemma is just a special case of [8, Theorem 4.5].

Lemma 4.9. Let X ∈ cc(Rn) be any convex set. For every ε > 0, the

open ball in cc(Rn) with the radius ε centered at X is convex, i.e., if

{A1, . . . , Ak} ⊂ cc(Rn) is a finite family such that for every i = 1, 2, . . . , k,

dH(Ai, X) < ε, then the set

k∑
i=1

tiAi =

{ k∑
i=1

tiai
∣∣ ai ∈ Ai, i = 1, . . . , k

}
is ε-close to X, where t1, t2, . . . , tk ∈ [0, 1] with

∑k
i=1 ti = 1.

Perhaps, the following is the key result of this section:

Proposition 4.10. For every ε > 0, there is an O(n)-map fε : M0(n) →
R(n), ε-close to the identity map of M0(n).

Proof. Let V = {O(X, ε/4)}X∈M0(n) be the open cover of M0(n) consisting of

all open balls of radius ε/4. By [7, Lemma 4.1], there exists an O(n)-normal

cover of M0(n) (see Section 2 for the definition),

W = {gSµ | g ∈ O(n), µ ∈M}

satisfying the following two conditions:

a) W is a star-refinement of V . That is to say that for each gSµ ∈ W , there

exists an element V ∈ V that contains the star of gSµ with respect to

W , i.e.,

St(gSµ,W) =
⋃
{hSλ ∈ W | hSλ ∩ gSµ 6= ∅} ⊂ V.

b) For each µ ∈ M, the set Sµ is an Hµ-slice, where Hµ coincides with the

stabilizer O(n)Xµ of a certain point Xµ ∈ Sµ.

Since Xµ ∈ M0(n), we see that Hµ acts non-transitively on the sphere

Sn−1. Thus, by Lemma 4.8, there exists Aµ ∈ R(n) which is ε/4-close to Xµ

and O(n)Aµ = Hµ.

For every µ ∈M, let us denote Oµ = O(n)(Sµ). Let Fµ : Oµ → O(n)(Aµ)

be the map defined by

Fµ(gZ) = gAµ, Z ∈ Sµ, g ∈ O(n).

Clearly Fµ is a well-defined continuous O(n)-map.

Fix an invariant locally finite partition of unity {pµ}µ∈M subordinated

to the open cover U = {Oµ}µ∈M, i.e.,

p−1µ
(
(0, 1]

)
⊂ Oµ for every µ ∈M.
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Let N (U) be the nerve of the cover U and suppose that M is its vertex

set. Denote by |N (U)| the geometric realization of N (U). Recall that every

point α ∈ |N (U)| can be expressed as a sum α =
∑
µ∈M

αµvµ, where vµ is

the geometric vertex corresponding to µ ∈ M and αµ, µ ∈ M are the

baricentric coordinates of α.

For a simplex σ of the nerveN (U) with the vertices µ0, . . . , µk, we will use

the notation σ = 〈µ0, . . . , µk〉. By |〈µ0, . . . µk〉| we denote the corresponding

geometric simplex with the geometric vertices vµ0 , . . . , vµk .

For every geometric simplex |σ| = |〈µ0, . . . µk〉| ⊂ |N (U)|, let us denote

by β(σ) ∈ |N (U)| the geometric baricenter of |σ|, i.e., β(σ) =
∑
µ∈M

β(σ)µvµ,

where

β(σ)µ =

{
1/k + 1, if µ ∈ {µ0, . . . , µk},
0, if µ /∈ {µ0, . . . , µk}.

Let us consider the map Ψ : |N (U)| → |N (U)| defined in each α =∑
µ∈M

αµvµ ∈ |N (U)| as follows: if |〈µ0, . . . µk〉| is the carrier of α and αµ0 ≥

αµ1 ≥ · · · ≥ αµk , then

Ψ(α) =
∑

σ∈N (U)

Ψ(α)σβ(σ)

where

(4.4)

Ψ(α)σ =


(i+ 1)

(
αµi − αµi+1

)
, if σ = 〈µ0, . . . , µi〉, i = 0, . . . , k − 1,

(k + 1)αµk , if σ = 〈µ0, . . . , µk〉,
0, if σ 6= 〈µ0, . . . , µi〉, i = 0, . . . , k.

It is not difficult to see that Ψ is the identity map of |N (U)| written in

the baricentric coordinates with respect to the first baricentric subdivision

of |N (U)|; we shall need this representation in the sequel.

Let p : M0(n)→ |N (U)| be the canonical map defined by

p(X) =
∑
µ∈M

pµ(X)vµ, X ∈M0(n).

Since each pµ is O(n)-invariant, the map p is also O(n)-invariant.

For every simplex σ = 〈µ0, . . . , µk〉 ∈ N (U) the set Vσ = Oµ0 ∩ · · · ∩Oµk

is a nonempty open subset of M0(n). Continuity of the union operator and

the convex hull operator (see, e.g., [28, Corollary 5.3.7] and [29, Theorem

2.7.4 (iv)]) imply that the map Ω′σ : Vσ →M0(n) given by

Ω′σ(X) = conv

(⋃
µ∈σ

Fµ(X)

)
, X ∈ Vσ,
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is a continuous O(n)-map.

Observe that Ω′σ(X) belongs to M0(n) and the contact set Ω′σ(X)∩Sn−1

is contained in the contact set
( ⋃
µ∈σ

Fµ(X)
)
∩ Sn−1 =

⋃
µ∈σ

(Fµ(X) ∩ Sn−1),

and hence,

(4.5) Ω′σ(X) ∩ Sn−1 has empty interior in Sn−1.

Fix a set B ∈ M0(n). For each simplex σ of N (U), we extend the map

Ω′σ to a function Ωσ : M0(n)→M0(n) as follows:

Ωσ(X) =

{
Ω′σ(X) if X ∈ Vσ,
B, if X /∈ Vσ.

The desired map fε : M0(n)→M0(n) can now be defined by the formula:

fε(X) =
∑

σ∈N (U)

Ψ
(
p(X))σΩσ(X), X ∈M0(n).

For every X ∈ M0(n), let Q(X) be the subset of M consisting of all

µ ∈M such that X ∈ p−1µ
(
(0, 1]

)
. Similarly, denote by Q′(X) the subset of

M consisting of all µ ∈M such that X ∈ p−1µ
(
(0, 1]

)
.

It is clear that Q(X) ⊂ Q′(X) and, due to local finiteness of the cover

{p−1µ
(
(0, 1]

)
}µ∈M, both sets are finite. Moreover, it follows from the formula

(4.4) that Ψ
(
p(X))σ = 0 whenever σ 6⊂ Q′(X).

Then, for every X ∈M0(n) we have:

(4.6) fε(X) =
∑

σ∈N (U)
σ⊂Q(X)

Ψ
(
p(X))σΩσ(X) =

∑
σN (U)
σ⊂Q′(X)

Ψ
(
p(X))σΩσ(X).

To see the continuity of fε, let us fix an arbitrary point C ∈ M0(n).

Define

V =
( ⋂
µ∈Q′(C)

Oµ

)
\
⋃

µ/∈Q′(C)

p−1µ
(
(0, 1]

)
.

Since the family {p−1µ ((0, 1])}µ∈M is locally finite, the union
⋃

µ/∈Q′(C)

p−1µ
(
(0, 1]

)
is closed, and therefore, V is a neighborhood of C. It is evident that for ev-

ery X ∈ V , the set Q(X) is contained in Q′(C). Using equality (4.6), we

infer that

fε(X) =
∑

σ∈N (U)
σ⊂Q′(C)

Ψ
(
p(X))σΩσ(X) for every X ∈ V.

Observe that V ⊂ Vσ for every simplex σ ∈ N (U) such that σ ⊂ Q′(C),

and hence, the restriction Ωσ|V = Ω′σ|V is continuous in V .
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On the other hand, Ψ
(
p(X)

)
σ

is just the β(σ)-th baricentric coordinate

of Ψ(p(X)). Thus, for every σ ∈ N (U), the map X 7→ Ψ(p(X))σ depends

continuously on X. So, fε|V is a finite sum of continuous functions and

therefore it is also continuous in V . Consequently, fε is continuous at the

point C ∈M0(n), as required.

If g ∈ O(n) and X ∈M0(n), then

fε(gX) =
∑

σ∈N (U)
σ⊂Q(X)

Ψ
(
p(gX))σΩσ(gX) =

∑
σ∈N (U)
σ⊂Q(X)

Ψ
(
p(X))σΩ′σ(gX)

=
∑

σ∈N (U)

Ψ
(
p(X))σ

(
gΩ′σ(X)

)
= g
( ∑
σ∈N (U)
σ⊂Q(X)

Ψ
(
p(X))σΩ′σ(X)

)

= g
( ∑
σ∈N (U)
σ⊂Q(X)

Ψ
(
p(X))σΩσ(X)

)
= gfε(X),

which shows that fε is O(n)-equivariant.

To see that fε(X) belongs to M0(n), let us suppose that

Q(X) = {µ0, . . . , µk} and pµ0(X) ≥ pµ1(X) ≥ · · · ≥ pµk(X).

Then, according to equalities (4.4) and (4.6), the set fε(X) can be seen

as the convex sum:

fε(X) = (k + 1)pµk(X)Ω〈µ0,...,µk〉(X)

+
k−1∑
i=0

(i+ 1)
(
pµi(X)− pµi+1

(X)
)

Ω〈µ0,...,µi〉(X)

= (k + 1)pµk(X)Ω′〈µ0,...,µk〉(X)

+
k−1∑
i=0

(i+ 1)
(
pµi(X)− pµi+1

(X)
)

Ω′〈µ0,...,µi〉(X).

Thus, fε(X) is a convex subset contained in Bn. Furthermore, observe that

Fµ0(X) ⊂ Ω′〈µ0,...,µi〉(X) for every i = 0, . . . , k. This implies that

Fµ0(X) = (k + 1)pµk(X)Fµ0(X) +
k−1∑
i=0

(i+ 1)
(
pµi(X)− pµi+1

(X)
)
Fµ0(X)

⊂ (k + 1)pµk(X)Ω′〈µ0,...,µk〉(X)

+
k−1∑
i=0

(i+ 1)
(
pµi(X)− pµi+1

(X)
)

Ω′〈µ0,...,µi〉(X)

= fε(X).

Since Fµ0(X) ∈ M0(n), the inclusion Fµ0(X) ⊂ fε(X) yields that fε(X) ∈
M0(n).
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On the other hand, the contact set fε(X) ∩ Sn−1 is contained in( k⋃
i=0

Ω′〈µ0,...,µi〉(X)
)
∩ Sn−1 =

k⋃
i=0

(
Ω′〈µ0,...,µi〉(X) ∩ Sn−1

)
.

Further, since by (4.5), each Ω′〈µ0,...,µi〉(X)∩Sn−1 has empty interior in Sn−1,

we infer that the finite union
k⋃
i=0

(
Ω′〈µ0,...,µi〉(X) ∩ Sn−1

)
also has empty

interior in Sn−1. This yields that fε(X) ∩ Sn−1 has empty interior in Sn−1,
as required.

It remains only to prove that dH
(
X, fε(X)

)
< ε for every X ∈M0(n).

Since fε(X) is a convex sum of the sets Ω〈µ0,...,µi〉(X) for i = 0, . . . , k,

according to Lemma 4.9, it is enough to prove that Ω〈µ0,...,µi〉(X) is ε-close

to X for every i = 0, . . . , k.

Recall that Ω〈µ0,...,µi〉(X) = conv
( i⋃
j=0

Fµj(X)
)
, and hence, we only have

to prove that each Fµj(X) satisfies dH
(
X,Fµj(X)

)
< ε.

For this purpose, suppose that gj ∈ O(n) is such that Fµj(X) = gjAµj .

Then X ∈ gjSµj and gjXµj ∈ gjSµj .
Since W is a star-refinement of V , there exists a point Z ∈ M0(n) such

that the star St(X,W) =
⋃
{gSµ ∈ W | X ∈ gSµ} is contained in O(Z, ε/4).

In particular,

(4.7) dH(X,Z) < ε/4 and dH(gjXµj , Z) < ε/4.

This implies that dH(gjXµj , X) < ε/2. By the choice of Aµj , we have that

dH(Aµj , Xµj) < ε/4. Since the Hausdorff metric is O(n)-invariant we get

dH(gjAµj , gjXµj) = dH(Aµj , Xµj) < ε/4,

and hence,

dH(X,Fµj(X)) = dH(X, gjAµj)

≤ dH(X, gjXµj) + dH(gjXµj , gjAµj)

< ε/2 + ε/4 < ε,

as required. �

Proposition 4.11. For every ε > 0, there is an O(n)-map, hε : M0(n) →
M0(n) \ R(n), ε-close to the identity map of M0(n).

Proof. Define a continuous map γ : M0(n)→ R by the rule:

γ(A) =
1

2
min{ε, dH(Bn, A)}, for every A ∈M0(n).
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Let hε(A) be just the closed γ(A)-neighborhood of A in Bn, i.e.,

hε(A) = Aγ(A) = {x ∈ Bn | d(x,A) ≤ γ(A)}, A ∈M0(n).

By the choice of γ(A), the set hε(A) is different from Bn, and since A ⊂
hε(A), we see that hε(A) ∈M0(n). Even more, hε(A) ∩ Sn−1 has nonempty

interior in the unit sphere Sn−1. Thus, hε(A) ∈M0(n) \ R(n).

By [7, Lemma 5.3], dH(A,Aγ(A)) < γA < ε which implies that hε is

ε-close to the identity map of M0(n).

Let us check the continuity of hε. For any A,C ∈ M0(n) the following

inequality holds:

dH(hε(A), hε(C)) = dH(Aγ(A), Cγ(C)) ≤ dH(Aγ(A), Aγ(C)) + dH(Aγ(C), Cγ(C)).

But,

dH(Aγ(A), Aγ(C)) ≤ |γ(A)− γ(C)| and dH(Aγ(C), Cγ(C)) ≤ dH(A,C)

(see, e.g., [7, Lemma 5.3]).

Consequently, we get:

dH(hε(A), hε(C)) ≤ |γ(A)− γ(C)|+ dH(A,C).

Now the continuity of γ implies the one of hε.

�

As a consequence of Propositions 4.10 and 4.11 we have the following

corollaries.

Corollary 4.12. For any closed subgroup K ⊂ O(n), the K-orbit space

M0(n)/K is a Q-manifold.

Proof. Consider the metric on M0(n)/K induced by dH according to equal-

ity (2.1).

Clearly, M0(n) is a locally compact space, and thus, the orbit space

M0(n)/K is also locally compact. Since M(n) is an O(n)-AR, and M0(n)

is an open O(n)-invariant set in M(n), we infer that M0(n) is an O(n)-

ANR. This in turn implies that M0(n) is a K-ANR (see, e.g., [27]). Then,

by Theorem 2.3, the orbit space M0(n)/K is an ANR.

According to Toruńczyk’s Characterization Theorem [26, Theorem 1], it

remains to check that for every ε > 0, there exist continuous maps f̃ε, h̃ε :

M0(n)/K → M0(n)/K, ε-close to the identity map of M0(n)/K such that

the images Im f̃ε and Im h̃ε are disjoint.

Let fε and hε be the O(n)-maps from Propositions 4.10 and 4.11, re-

spectively. They induce continuous maps f̃ε : M0(n)/K → M0(n)/K and
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h̃ε : M0(n)/K → M0(n)/K. Since Im f̃ε = (Im fε)/K, Im h̃ε = (Imhε)/K

and Im fε ∩ Imhε = ∅, we infer that Im f̃ε ∩ Im h̃ε = ∅.
On the other hand, since fε and hε are ε-close to the identity map of

M0(n), using inequality (2.2), we get that f̃ε and h̃ε are ε-close to the identity

map of M0(n)/K. This completes the proof.

�

Corollary 4.13. For any closed subgroupK ⊂ O(n) that acts non-transitively

on the unit sphere Sn−1, the K-orbit space M(n)/K is a Hilbert cube. In

particular, M(n) is homeomorphic to the Hilbert cube.

Proof. We have already seen in Corollary 4.7 that the singleton {Bn} is a Z-

set in M(n)/K. Observe that the Q-manifold M0(n)/K can be seen as the

complement
(
M(n)/K

)
\ {Bn}. It then follows from [26, §3] that M(n)/K

is also a Q-manifold. Furthermore, M(n)/K is compact and contractible.

But since the only compact contractible Q-manifold is the Hilbert cube (see

[28, Theorem 7.5.8]), we conclude that M(n)/K is homeomorphic to the

Hilbert cube. �

Corollary 4.14. For any closed subgroupK ⊂ O(n) that acts non-transitively

on the unit sphere Sn−1, the K-fixed point set M(n)K is homeomorphic to

the Hilbert cube.

Proof. Since M(n) is compact and M(n)K is closed in M(n), we see that

M(n)K is also compact. By Theorem 4.3, M(n) is an O(n)-AR. This, in

combination with [9, Theorem 3.7], yields that M(n)K is an AR. In partic-

ular, M(n)K is contractible.

Let fε and hε be the O(n)-maps from Propositions 4.10 and 4.11, respec-

tively. Due to equivariance, we have

fε
(
M0(n)K

)
⊂M0(n)K and hε

(
M0(n)K

)
⊂M0(n)K .

By virtue of Toruńczyk’s Characterization Theorem [26, Theorem 1],

we conclude that M0(n)K is a Q-manifold. But M0(n)K = M(n)K \ {Bn}
and Corollary 4.7 implies that the singleton {Bn} is a Z-set in M(n)K .

This yields that M(n)K is also a Q-manifold (see [26, §3]). Furthermore,

M(n)K is compact and contractible. Since the only compact contractible

Q-manifold is the Hilbert cube (see [28, Theorem 7.5.8]), we conclude that

M(n)K is homeomorphic to the Hilbert cube. �

We resume all the above results about the O(n)-space M(n) in the fol-

lowing corollary:
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Corollary 4.15. M(n) is a Hilbert cube endowed with an O(n)-action

satisfying the following properties:

(1) M(n) is an O(n)-AR with a unique O(n)-fixed point, Bn,

(2) M(n) is strictly O(n)-contractible to Bn,

(3) For a closed subgroup K ⊂ O(n), the set M(n)K equals the singleton

{Bn} if and only if K acts transitively on the unit sphere Sn−1, and

M(n)K is homeomorphic to the Hilbert cube whenever M(n)K 6= {Bn},
(4) For any closed subgroup K ⊂ O(n), the K-orbit space M0(n)/K is a

Q-manifold.

This corollary in combination with [10, Theorem 3.3], yields the follow-

ing:

Theorem 4.16. The orbit spaceM(n)/O(n) is homeomorphic to the Banach-

Mazur compactum BM(n).

5. Some properties of L(n)

Recall that L(n) is the hyperspace of all compact convex bodies for which

the Euclidean unit ball is the minimum-volume ellipsoid of Löwner.

In [7] the subset L′(n) of L(n) consisting of all A ∈ L(n) with A =

−A was studied. It turns out that L(n) enjoys all the properties of L′(n)

established in [7], and an easy modification of the method developed in

[7, section 5] allows one to establish similar properties of L(n). However,

seeking for completeness, we shall provide in this section some more specific

details and appropriate new references.

Proposition 5.1. L(n) is an O(n)-AR.

Proof. It was proved in [8, Corollary 4.8] that cb(Rn) is an O(n)-AR. Since

L(n) is a global O(n)-slice in cb(Rn), according to Corollary 3.9(2), there

exists an O(n)-equivariant retraction r : cb(Rn) → L(n). This yields that

L(n) is also an O(n)-AR. �

Proposition 5.2. The map F : L(n)× [0, 1]→ L(n) defined by

F (A, t) = (1− t)A+ tBn

is an O(n)-strict contraction such that F (A, 1) = Bn. In particular, for every

closed subgroup K ⊂ O(n), the orbit space L(n)/K is contractible to its

point Bn.
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Proof. It is evident that F satisfies the first condition of the proposition.

Letting F̃
(
K(A), t

)
= K

(
F (A, t)

)
we obtain a deformation of L(n)/K to

the point Bn ∈ L(n)/K, thus proving that L(n)/K is contractible. �

By P(n) we will denote the subset of L(n) consisting of all compact

convex bodies A ∈ L(n) such that the contact set A ∩ ∂Bn has empty

interior in the boundary sphere ∂Bn = Sn−1.
Denote by L0(n) the complement L(n) \ {Bn}.

Lemma 5.3. Let ε > 0. For each convex body X ∈ L0(n), there exists

a convex body A ∈ P(n) such that dH(X,A) < ε and the O(n)-stabilizer

O(n)A coincides with the O(n)-stabilizer O(n)X .

Although the proof of Lemma 5.3 is similar to the one of Lemma 4.8,

there is a significant difference, and for this reason we shall present the

complete proof here.

Proof. Let r : cb(Rn)→ L(n) be the O(n)-equivariant retraction used in the

proof of Proposition 5.1 (c.f. Corollary 3.9(2)). According to Theorem 2.2,

there is a O(n)X-slice S such that X ∈ S and [O(n)C ] � [O(n)X ] whenever

C ∈ O(n)(S). Since O(n)(S) is open, there exist a number 0 < η < ε such

that O(X, η) ⊂ O(n)(S). In particular, if C ∈ O(X, η) then [O(n)C ] �
[O(n)X ].

Since L(n) is compact, there exists 0 < δ < η/2 such that dH(r(C), C) <

η/2 for every C lying in the δ-neighborhood of L(n).

Let p1, . . . , pk ∈ ∂X be such that the convex hull P = conv
(
{p1, . . . , pk}

)
has nonempty interior in Rn and dH(P,X) < δ. Consider the convex hull

D = conv
(
O(n)X(p1) ∪ · · · ∪O(n)X(pk)

)
.

Since P ⊂ D, we see that D has nonempty interior, and hence, D ∈
cb(Rn). Since O(n)X acts non-transitively on Sn−1, we can apply Lemma 4.4,

according to which the boundary ∂D does not contain an (n − 1)-elliptic

domain. In particular, the contact set D ∩ ∂l(D) does not contain an el-

liptic domain (recall that here l(D) denotes the minimal volume ellipsoid

containing D).

Let A = r(D). Since A ∈ L(n) and A lies in the Aff(n)-orbit of D (see

Corollary 3.9(1)), there exists an affine transformation g such that A = gD.

The contact set A∩Sn−1 is the image under g of the contact set D∩ ∂l(D),

and thus, it has empty interior in the sphere Sn−1. Hence, A belongs to

P(n). The construction of P guarantees that P ⊂ D ⊂ X, and therefore,

dH(D,X) ≤ dH(P,X) < δ < η/2.
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By the choice of δ one has dH(r(D), D) < η/2, and hence,

dH(A,X) ≤ dH(A,D) + dH(D,X)

= dH(r(D), D) + dH(D,X) < η/2 + η/2 = η.

Thus, dH(A,X) < η < ε, as required.

Furthermore, due to the choice of η, O(n)A is conjugate to a subgroup

of O(n)X . It remains to prove that O(n)X = O(n)A. Since D is an O(n)X-

invariant subset, one has O(n)X ⊂ O(n)D. Also, since r is an O(n)-map, we

have

O(n)D ⊂ O(n)r(D) = O(n)A.

Thus, O(n)X ⊂ O(n)A which implies, in combination with [O(n)A] �
[O(n)X ], that O(n)A = O(n)X , as required. �

Proposition 5.4. For every ε > 0, there is an O(n)-map, fε : L0(n) →
P(n), ε-close to the identity map of L0(n).

Proof. Repeat the proof of Proposition 4.10, replacing M0(n) by L0(n), as

far as the construction of the family {Xµ}µ∈M. Next, use Lemma 5.3 to find,

for every index µ, a compact set Aµ, ε/4-close to Xµ such that O(n)Aµ = Hµ.

Now the proof follows by repeating the rest of the proof of Proposi-

tion 4.10, previously replacing M0(n) by L0(n), and R(n) by P(n). �

Proposition 5.5. For every ε > 0, there is an O(n)-map, hε : L0(n) →
L0(n) \ P(n), ε-close to the identity map of L(n) such that hε(A) 6= Bn for

every A ∈ L(n).

Proof. The proof follows by repeating the proof of Proposition 4.11, previ-

ously replacing M0(n) by L0(n), and M0(n) \ R(n) by L0(n) \ P(n).

�

Proposition 5.6. Let K ⊂ O(n) be a a closed subgroup that acts non-

transitively on Sn−1. Then, for every ε > 0, there exists a K-equivariant

map χε : L(n)→ L0(n), ε-close to the identity map of L(n).

Proof. The proof goes as the one of Proposition 4.6, if we replace M(n) by

L(n), M0(n) by L0(n), cc(Rn) by cb(Rn), and the retraction r of (4.2) by

the retraction r : cb(Rn) → L(n) given in Corollary 3.9(2). We omit the

details. �

In the same manner that Proposition 4.6 implies Corollary 4.7, we infer

from Proposition 5.6 the following corollary:
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Corollary 5.7. For every closed subgroup K ⊂ O(n) that acts non transi-

tively on the unit sphere Sn−1,
(1) the singleton {Bn} is a Z-set in L(n)K ,

(2) the class of {Bn} is a Z-set in L(n)/K.

Proposition 5.8. For every closed subgroup K ⊂ O(n), L0(n)/K is a

Q-manifold.

Proof. By Proposition 5.1, L(n) is an O(n)-AR, which in turn implies that

L(n) ∈ K-AR (see, e.g., [27]). Then, Theorem 2.3 implies that L(n)/K is

an AR. Since L0(n)/K is open in L(n)/K we conclude that L0(n)/K is a

locally compact ANR.

According to Toruńczyk’s Characterization Theorem [26, Theorem 1],

it is enough to check that for every ε > 0, there exist continuous maps

f̃ε, h̃ε : L0(n)/K → L0(n)/K ε-close to the identity map of L0(n)/K such

that Im f̃ε ∩ Im h̃ε = ∅.
Let fε and hε be the O(n)-maps constructed in Propositions 5.4 and 5.5,

respectively. They induce continuous maps f̃ε : L0(n)K → L0(n)/K and

h̃ε : L0(n)/K → L0(n)/K. Since Im f̃ε = (Im fε)/K, Im h̃ε = (Imhε)/K

and Im fε ∩ Imhε = ∅, we infer that Im f̃ε ∩ Im h̃ε = ∅. Since fε and hε are

ε-close to the identity map of L0(n), using inequality (2.2), we get that f̃ε

and h̃ε are ε-close to the identity map of L0(n)/K, as required. �

Now, Proposition 5.8 , Corollary 5.7 and [26, §3] imply that L(n)/K is a

Q-manifold if K ⊂ O(n) is a closed subgroup that acts non-transitively on

the sphere Sn−1. Since L(n)/K is compact and contractible, we infer from

[28, Theorem 7.5.8] the following corollary:

Corollary 5.9. For every closed subgroupK ⊂ O(n) that acts non-transitively

on the unit sphere Sn−1, the K-orbit space L(n)/K is a Hilbert cube. In

particular, L(n) is a Hilbert cube.

Repeating the same steps used in the proof of Corollary 4.14, we can

infer from Corollary 5.7 and Propositions 5.4 and 5.5 the following result:

Corollary 5.10. For any closed subgroupK ⊂ O(n) that acts non-transitively

on the unit sphere Sn−1, the K-fixed point set L(n)K is homeomorphic to

the Hilbert cube.

Finally, likewise to the case ofM(n), we can infer from all previous results

of this section that L(n) is a Hilbert cube endowed with an O(n)-action that

satisfies the following conditions:
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(1) L(n) is an O(n)-AR with a unique O(n)-fixed point, Bn,

(2) L(n) is strictly O(n)-contractible to Bn,

(3) For a closed subgroup K ⊂ O(n), the set L(n)K equals the singleton

{Bn} if and only if K acts transitively on the unit sphere Sn−1,
and L(n)K is homeomorphic to the Hilbert cube whenever L(n)K 6=
{Bn},

(4) For any closed subgroup K ⊂ O(n), the K-orbit space L0(n)/K is

a Q-manifold.

These properties in combination with [10, Theorem 3.3], yield the fol-

lowing:

Theorem 5.11. The orbit space L(n)/O(n) is homeomorphic to the Banach-

Mazur compactum BM(n).

6. Orbit spaces of cb(Rn)

In what follows we will denote by cb0(Rn) the complement:

cb0(Rn) = cb(Rn) \ E(n).

In this section we shall prove the following main result:

Theorem 6.1. LetK ⊂ O(n) be a closed subgroup that acts non-transitively

on Sn−1. Then:

(1) the orbit space cb0(Rn)/K is a Q-manifold.

(2) the orbit space cb(Rn)/K is aQ-manifold homeomorphic to (E(n)/K)×
Q.

By Corollary 3.9(2) we have an O(n)-equivariant homeomorphism

cb(Rn) ∼=O(n) L(n)× E(n).

Under this homeomorphism, cb0(Rn) corresponds to the product E(n)×
L0(n), thus we have the following O(n)-equivariant homeomorphism:

(6.1) cb(Rn) ∼=O(n) L(n)× E(n).

In the sequel we will consider the following O(n)-invariant metric on the

product E(n)× L(n):

D
(
(A1, E1), (A2, E2)

)
= dH(A1, A2) + dH(E1, E2).

Proposition 6.2. For each ε > 0 and every closed subgroup K ⊂ O(n)

that acts non-transitively on Sn−1, there exists a K-equivariant map η :

cb(Rn)→ cb0(Rn) which is ε-close to the identity map of cb(Rn).
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Proof. Let ε > 0. By Proposition 5.6, there exists a K-map, χε : L(n) →
L0(n), such that dH

(
A, ξ(A)

)
< ε for every A ∈ L(n). Then, the map

η = χε × Id : L(n)× E(n)→ L0(n)× E(n)

is a K-map such that

D
(
η(A,E), (A,E)

)
= dH

(
ξ(A), A

)
< ε.

�

The map η of Proposition 6.2 induces a map

η̃ :
L(n)× E(n)

K
−→ L0(n)× E(n)

K

which, by virtue of inequality (2.2), is ε-close to the identity map of L(n)×E(n)
K

.

This yields the following corollary:

Corollary 6.3. For every closed subgroupK ⊂ O(n) that acts non-transitively

on Sn−1, E(n)/K is a Z-set in cb(Rn)/K. In particular, E(n) is a Z-set in

cb(Rn).

Proposition 6.4. Let K ⊂ O(n) be a closed subgroup that acts non-

transitively on Sn−1 and π : L(n)×E(n)→ E(n) be the second projection.

Then the induced map π̃ :
(
L(n)×E(n)

)
/K → E(n)/K is proper and has

contractible fibers.

Proof. Consider the following commutative diagram:

L(n)× E(n)
π //

p1
��

E(n)

p2
��

L(n)×E(n)
K π̃

// E(n)
K
,

where p1 and p2 are the respective K-orbit maps.

Properness of π̃ easily follows from compactness of L(n) and K. That

the fibers of π̃ are contractible follows immediately from the fact that L(n)

is O(n)-equivariantly contractible (see Proposition 5.2). �

Theorem 6.5 (R. D. Edwards). Let M be a Q manifold and Y a locally

compact ANR. If there exists a CE-map f : M → Y , then M is homeomor-

phic to Y ×Q.

Proof. Since f is a CE-map, then by a theorem of R. D. Edwards [14, The-

orem 43.1], the product map

f × Id : M ×Q→ Y ×Q
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is a near homeomorphism. According to the Stability Theorem [14, The-

orem 15.1], M is homeomorphic to M × Q. Thus, we have the following

homeomorphisms:

M ∼= M ×Q ∼= Y ×Q,
which completes the proof. �

Proof of Theorem 6.1. (1) By (6.1), cb0(Rn) isO(n)-homeomorphic to L0(n)×
E(n). This implies that the orbit spaces cb0(Rn)/K and L0(n)×E(n)

K
are home-

omorphic. For this reason, it is enough to prove that L0(n)×E(n)
K

is a Q-

manifold.

Suppose that L0(n)×E(n)
K

is equipped with the metric D∗ induced by D as

we have defined in equality (2.1).

By Proposition 5.1, L(n) ∈ O(n)-AR and by Corollary 3.9(2), E(n) ∈
O(n)-AR. Consequently, the product L0(n) × E(n) is a locally compact

O(n)-ANR, which in turn implies that L0(n)×E(n) ∈ K-AR (see, e.g., [27]).

Then, by Theorem 2.3, the K-orbit space L0(n)×E(n)
K

is a locally compact

ANR.

Let fε and hε be the maps from Propositions 5.4 and 5.5, respectively.

Consider the following maps:

f = fε × Id : L0(n)× E(n)→ L0(n)× E(n),

h = hε × Id : L0(n)× E(n)→ L0(n)× E(n),

where Id denotes the identity map of E(n). Since fε and hε are O(n)-maps

with disjoint images, f and h are so. Then they induce continuous maps

f̃ , h̃ :
L0(n)× E(n)

K
→ L0(n)× E(n)

K
which make the followings diagrams commutative:

L0(n)× E(n)
f //

p
��

L0(n)× E(n)

p
��

L0(n)× E(n)
h //

p
��

L0(n)× E(n)

p
��

L0(n)×E(n)
K

f̃

//_____ L0(n)×E(n)
K

L0(n)×E(n)
K

h̃

//_____ L0(n)×E(n)
K

.

Since, dH
(
fε(A), A

)
< ε, we infer that

D
(
f(A,E), (A,E)

)
= D

(
(fε(A), E), (A,E)

)
= dH

(
fε(A), A

)
< ε

Similarly, we can prove that D
(
h(A,E), (A,E)

)
< ε. Thus, f and h are

ε-close to the identity map of L0(n) × E. Next, using inequality (2.2) we

get that f̃ and h̃ are ε-close to the identity map of L0(n)×E(n)
K

.
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Finally, since Im f̃ = (Im f)/K, Im h̃ = (Imh)/K and Im f ∩ Imh = ∅,
we infer that Im f̃ ∩ Im h̃ = ∅. Consequently, due to Toruńczyk’s Charac-

terization Theorem ([26, Theorem 1]), L0(n)×E
K

is a Q-manifold, as required.

(2) Since, by Corollary 3.9(2), cb(Rn) and L(n)×E(n) are O(n)-homeo-

morphic, the K-orbits spaces cb(Rn)/K and L(n)×E(n)
K

are homeomorphic.

On the other hand, cb(Rn) is an O(n)-AR ([8, Corollary 4.8]), which in turn

implies that cb(Rn) ∈ K-AR (see, e.g., [27]). Then, Theorem 2.3 implies that

cb(Rn)/K ∼= L(n)×E(n)
K

is an AR. By the previous case (1), cb0(Rn)/K is a

Q-manifold while its complement in cb(Rn)/K is a Z-set (see Corollary 6.3).

Now a result of Toruńczyk [26, §3] yields that cb(Rn)/K is a Q-manifold

too.

Furthermore, by Corollary 3.10, E(n) is an O(n)-AR, which in turn

implies that E(n) ∈ K-AR (see, e.g., [27]). Then, according to Theorem 2.3,

the orbit space E(n)/K is an AR.

Since, by Proposition 6.4, the map

π̃ :
L(n)× E(n)

K
→ E(n)/K

is proper and has contractible fibers, it is a CE-map (see [14, Ch. XIII]) be-

tween AR’s. Since cb(Rn)
K
∼= L(n)×E(n)

K
is a Q-manifold, Edwards’ Theorem 6.5

yields that cb(Rn)/K is homeomorphic to
(
E(n)/K

)
×Q, as required. �

7. Orbit spaces of cc(Rn)

In this section we shall prove the following two main results:

Theorem 7.1. For every closed subgroupK ⊂ O(n) that acts non-transitively

on Sn−1, the orbit space cc(Rn)/K is homeomorphic to the punctured Hilbert

cube.

Theorem 7.2. The orbit space cc(Rn)/O(n) is homeomorphic to the open

cone over BM(n).

The proofs are preceded by some preparation.

Lemma 7.3. The map ν defined in (4.1) is proper and has contractible

fibers.

Proof. Clearly, ν is onto. Take a compact subset C ⊂ [0,∞). Let b be the

supremum of C and denote by Nb the closed ball with the radius b centered

at the origin of Rn. Clearly, ν−1(C) is a closed subset of cc(Nb). According

to [21, Theorem 2.2], cc(Nb) is compact, and thus, ν−1(C) is also compact.

This shows that ν is a proper map.
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We show that for every point t ∈ [0,∞) the inverse image ν−1(t) is

contractible. Consider the homotopy H : ν−1(t)× [0, 1]→ ν−1(t) defined by

the following formula:

(7.1) H(A, s) = sNt + (1− s)A, A ∈ ν−1(t), s ∈ [0, 1].

It is easy to see that H(A, s) ∈ ν−1(t), and hence, H defines a (strict)

homotopy of ν−1(t) to its point Nt ∈ ν−1(t). Thus, ν−1(t) is contractible, as

required. �

Since ν is O(n)-invariant, it induces, for every closed subgroup K ⊂
O(n), a continuous map

ν̃ : cc(Rn)/K → [0,∞)

given by

ν̃
(
K(A)

)
= ν(A), K(A) ∈ cc(Rn)/K.

Proposition 7.4. ν̃ is proper and has contractible fibers.

Proof. Clearly, ν̃ is an onto map. Let us denote by p : cc(Rn)→ cc(Rn)/K

the K-orbit map. Then, we have the following commutative diagram:

cc(Rn)
ν //

p
��

[0,∞)

cc(Rn)
K

ν̃

::vvvvvvvvv

If C ⊂ [0,∞) is a compact set, then

ν̃−1(C) = {K(A) | ν(A) ∈ C} = p
(
ν−1(C)

)
which is compact because ν is proper and p is continuous. This yields that

ν̃ is a proper map.

To finish the proof, let us show that ν̃−1(t) is contractible for every

t ∈ [0,∞). Consider the homotopy H defined in (7.1). Observe that H is

equivariant. Indeed, for every g ∈ O(n) one has:

(7.2)

H(gA, s) = sNt+(1−s)gA = sgNt+(1−s)gA = g
(
sNt+(1−s)A

)
= gH(A, s).

Hence, H induces a homotopy H̃ : ν̃−1(t)×[0, 1]→ ν̃−1(t) defined as follows:

H̃
(
K(A), s

)
= K

(
H(A, s)

)
.

Clearly, H̃ is a contraction to the point K(Nt), which proves that ν̃−1(t) is

contractible, as required. �
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Proposition 7.5. The complement

cc(Rn)

K
\ cb(R

n)

K

is a Z-set in cc(Rn)/K.

Proof. For every positive ε, the map ζε : cc(Rn)→ cb(Rn) defined by

ζε(A) = Aε = {x ∈ Rn | d(x,A) ≤ ε}

is an O(n)-equivariant map which is ε-close to the identity map of cc(Rn).

Hence, for every closed subgroup K ⊂ O(n) it induces a continuous map

ζ̃ε : cc(Rn)/K → cb(Rn)/K.

Since the Hausdorff metric dH is O(n)-invariant it then follows that

dH induces a metric in cc(Rn)/K as defined in the equality (2.1). Then,

by virtue of inequality (2.2), the map ζ̃ε is ε-close to the identity map of

cc(Rn)/K. This proves that the set

cc(Rn) \ cb(Rn)

K
=
cc(Rn)

K
\ cb(R

n)

K

is a Z-set in cc(Rn)/K. �

Proof of Theorem 7.1. Since by Theorem 6.1, cb(Rn)/K is a Q-manifold

and the complement cc(Rn)
K
\ cb(Rn)

K
is a Z-set, it follows from [26, §3] that

cc(Rn)/K is also a Q-manifold.

Next, since by Proposition 7.4, the map ν̃ : cc(Rn)/K → [0,∞) is proper

and has contractible fibers, it is a CE-map (see [14, Ch. XIII]). Then we can

use Edwards’ Theorem 6.5 to conclude that cc(Rn)/K is homeomorphic

to [0,∞) × Q. As shown in the proof of [14, Theorem 12.2], the product

[0,∞)×Q is homeomorphic to the punctured Hilbert cube, which completes

the proof. �

Now we pass to the proof of Theorem 7.2.

The open cone over a topological space X is defined to be the quotient

space

OC(X) = X × [0,∞)/X × {0}.

We will denote by [A, t] the equivalence class of the pair (A, t) ∈ X× [0,∞)

in this quotient space. It is evident that [A, t] = [A′, t′] iff t = 0 = t′ or

A = A′ and t = t′. For convenience, the class [A, 0] will be denoted by θ.
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Denote the open cone over M(n) by M̃(n). The orthogonal group O(n)

acts continuously on M̃(n) by the following rule:

g ∗ [A, t] = [gA, t].

Proposition 7.6. The hyperspace cc(Rn) is O(n)-homeomorphic to M̃(n).

Proof. Define Φ : cc(Rn)→ M̃(n) by the formula:

Φ(A) =

{
θ, if A = {0},
[r(A), ν(A)], if A 6= {0},

where ν and r are the maps defined in (4.1) and (4.2), respectively.

Since r is O(n)-equivariant and ν is O(n)-invariant, we infer that Φ is

O(n)-equivariant.

Clearly, Φ is a bijection with the inverse map Φ−1 : M̃(n) → cc(Rn)

given by

Φ−1([A, t]) = tA.

Continuity of the restrictions Φ|cc(Rn)\{0} and Φ−1|M̃(n)\{θ} is evident. Let us

prove the continuity of Φ at {0} and the continuity of Φ−1 at θ, simultane-

ously.

Let ε > 0 and let Oε be the open ε-ball in cc(Rn) centered at {0}.
Denote Uε = {[A, t] ∈ M̃(n) | t < ε}. Since Uε is an open neighborhood of

θ in M̃(n), it is enough to prove that Φ(Oε) = Uε.

If B ∈ Oε then B ⊂ N({0}, ε), and hence, ν(B) < ε. This proves that

Φ(B) = [r(B), ν(B)] ∈ Uε, implying that

(7.3) Φ(Oε) ⊂ Uε.

On the other hand, if [A, t] ∈ Uε then t < ε, implying that tA ⊂
N({0}, ε). This yields that for every a ∈ A, d(ta, 0) < ε. In particular,

0 ∈ N(tA, ε), and hence, dH({0}, tA) < ε. Thus, Φ−1(Uε) ⊂ Oε and

(7.4) Uε = Φ
(
Φ−1(Uε)

)
⊂ Φ(Oε).

Combining (7.3) and (7.4) we get the required equality Φ
(
O({0}, ε)

)
=

Uε.

�

Since Φ is an O(n)-homeomorphism, it induces a homeomorphism be-

tween the O(n)-orbit spaces, cc(Rn)/O(n) and M̃(n)/O(n). Thus, we have

the following:

Corollary 7.7. The orbit spaces cc(Rn)/O(n) and M̃(n)/O(n) are home-

omorphic.
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Lemma 7.8. For every closed subgroupK ⊂ O(n), the orbit space M̃(n)/K

is homeomorphic to the open cone over M(n)/K.

Proof. The map Ψ : M̃(n)/K → OC
(
M(n)/K

)
defined by the rule:

Ψ
(
K[A, t]

)
= [K(A), t],

is a homeomorphism. �

Proof of Theorem 7.2. According to Corollary 7.7 and Lemma 7.8, the or-

bit space cc(Rn)/O(n) is homeomorphic to the open cone OC
(
M(n)/O(n)

)
.

By Corollary 4.16, M(n)/O(n) is homeomorphic to the Banach-Mazur com-

pactum BM(n), and hence, cc(Rn)/O(n) is homeomorphic to OC
(
BM(n)

)
,

as required. �

7.1. Conic structure of cc(Rn) and related spaces. It is easy to see that

Rn is O(n)-homeomorphic to the open cone over Sn−1. This conic structure

induces a conic structure in cc(Rn) as it was shown in Proposition 7.6.

Furthermore, the O(n)-homeomorphism between cc(Rn) and M̃(n), in

combination with Lemma 7.8, yields the following:

Theorem 7.9. For every closed subgroup K ⊂ O(n), the K-orbit space

cc(Rn)/K is homeomorphic to the open cone OC
(
M(n)/K

)
On the other hand, if we restrict the O(n)-homeomorphism from Propo-

sition 7.6 to cc(Bn), we get an O(n)-homeomorfism between cc(Bn) and the

cone over M(n).

As in Lemma 7.8, we can prove that the K-orbit space of the cone over

M(n) is homeomorphic to the cone over M(n)/K for every closed subgroup

K of O(n). This implies the following result:

Proposition 7.10. For every closed subgroup K ⊂ O(n), the K-orbit space

cc(Bn)/K is homeomorphic to the cone over M(n)/K.

Corollary 7.11. For every closed subgroup K ⊂ O(n) that acts non-

transitively on the unit sphere Sn−1, the K-orbit space cc(Bn)/K is home-

omorphic to the Hilbert cube.

Proof. By Proposition 7.10, the K-orbit space cc(Bn)/K is homeomorphic

to the cone over M(n)/K. Since K acts non-transitively on Sn−1, we infer

from Corollary 4.13 that M(n)/K is homeomorphic to the Hilbert cube.

Thus, cc(Bn)/K is homeomorphic to the cone over the Hilbert cube, which

according to [14, Theorem 12.2], is homeomorphic to the Hilbert cube itself.

�
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On the other hand, Theorem 4.16 and Proposition 7.10 imply our final

result:

Corollary 7.12. The orbit space cc(Bn)/O(n) is homeomorphic to the cone

over the Banach-Mazur compactum BM(n).

It is well known that the Banach-Mazur compactum BM(n) is an abso-

lute retract for all n ≥ 2 (see [5]) and the only compact absolute retract that

is homeomorphic to its own cone is the Hilbert cube (see, e.g., [28, Theorem

8.3.2]). Therefore, it follows from Corollary 7.12 and Theorem 4.16 that Pel-

czyński’s question of whether BM(n) is homeomorphic to the Hilbert cube

is equivalent to the following one:

Question 7.13. Are the two orbit spaces cc(Bn)/O(n) and M(n)/O(n)

homeomorphic?

In conclusion we would like to formulate two more questions suggested

by the referee of this paper.

Question 7.14. What is the topological type of the pair
(
cc(Rn), cb(Rn)

)
?

For any 0 ≤ k ≤ n, define

cc≥k(Rn) = {A ∈ cc(Rn) | dim A ≥ k}

and observe that cb(Rn) = cc≥n(Rn) and cc(Rn) = cc≥0(Rn).

Question 7.15. What is the topological structure of the spaces cc≥k(Rn)

and of the complements cck(Rn) = cc≥k(Rn) \ cc≥k+1(Rn) for 0 ≤ k < n?

Acknowledgement. The authors are thankful to the referee for the careful

reading of the manuscript and for drawing their attention to Questions 7.14

and 7.15.

References

1. H. Abels Parallelizability of proper actions, global K-slices and maximal compact
subgroups, Math. Anal. 212 (1974), 1-19.

2. J. L. Alperin and R. B. Bell, Groups and Representations, Graduate texts in math-
ematics 162, Springer, New York, 1995.

3. S. A. Antonyan, Retracts in the categories of G-spaces, Izv. Akad. Nauk Arm. SSR.
Ser. Mat. 15 (1980), 365-378; English transl. in: Soviet J. Contem. Math. Anal. 15
(1980), 30-43.

4. S. A. Antonyan, Retraction properties of an orbit space, Matem. Sbornik 137
(1988), 300-318; English transl. in: Math. USSR Sbornik 65 (1990), 305-321.

5. S. A. Antonyan, The Banach-Mazur compacta are absolute retracts, Bull. Acad.
Polon. Sci. Ser. Math. 46 (1998), 113-119.



AFFINE GROUP ACTING ON HYPERSPACES 43

6. S. A. Antonyan, The topology of the Banach-Mazur compactum, Fund. Math. 1966,
no. 3 (2000), 209-232.

7. S. A. Antonyan, West’s problem on equivariant hyperspaces and Banach-Mazur
compacta, Trans. Amer. Math. Soc., 355 (2003), 3379-3404.

8. S. A. Antonyan, Extending equivariant maps into spaces with convex structures,
Topology Appl., 153 (2005), 261-275.

9. S. A. Antonyan, A characterization of equivariant absolute extensors and the equi-
variant Dugundji theorem, Houston J. Math., Vol. 31, No. 2, (2005), 451-462.

10. S. A. Antonyan, New topological models for Banach-Mazur compacta, Journal of
Mathematical Sciences, vol. 146, no. 1, (2007), 5465-5473.
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18. I. Kaplansky, Linear Algebra and Geometry. A second course, Dover Publ., New

York, 1974.
19. J. Lindenstrauss and V. D. Millman, The local theory of normed spaces and its ap-

plications to convexity, in: Handbook of Convex Geometry (P. M. Gruber and J. M.
Wills, eds.), pp. 1149-1220, Elsever Sci. Publ. B. V. (North-Holland), Amsterdam,
1993.

20. A. M. Macbeath, A compactness theorem for affine equivalence-classes of convex
regions, Canadian Journal of Mathematics, III (1951), 54-61.

21. S. B. Nadler, Jr., J. E. Quinn, and N.M. Stavrakas, Hyperspaces of compact convex
sets Pacific J. Math. 83 (1979), 441-462.

22. R. Palais, The classification of G-spaces, Memoirs of the American Mathematical
Society, vol 36, American Mathematical Society, Providence, RI, 1960.

23. R. Palais, On the existence of slices for actions of non-compact Lie groups, Ann.
of Math 73 (1961), 295-323.

24. K. Sakai and Z. Yang, The space of closed convex sets in Euclidean spaces with the
fell topology, Bull. Pol. Acad. Sci., Vol. 55, no.2 (2007), 139-143.

25. E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
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Departamento de Matemáticas, Facultad de Ciencias, Universidad Na-
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E-mail address: nat@ciencias.unam.mx


