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Abstract

Let G a locally compact topological group. Let L be a linear G-space and Y ⊂ L
a metrizable convex proper subset. Let X be a paracompact proper G-space with
paracompact orbit space. We will give conditions for Y in order that every equivariant
l.s.c. multivalued mapping φ : X ⇒ Y with complete and convex values admits an
equivariant selection.

1 Introduction

The classical Michael selection theorem [9] states that every lower semicontinuous multi-
valued mapping from a paracompact space into the non empty closed and convex sets of
a Banach space admits a selection. By following the same method used in Michael [9], it
was proved in [12, Theorem 1.4.9] that every lower semicontinuous multivalued mapping
from a paracompact space into the non empty complete and convex sets of a normed lin-
ear space admits a selection. The proof of these theorems consists on finding an ε-near
selection for every positive ε. Then the required selection apears as the limit of a carefully
constructed sequence of 2−n-near selections.

In [5] an equivariant generalization of Michael’s theorem was proved: If G is a compact
group, X is a paracompact G-space and Y is a Banach G-space, then every lower semi-
continuous multivalued equivariant map from X into the non empty convex and closed
subsets of Y admits an equivariant selection. In the proof of this result, the authors used
the vector valued integral with respect to the Haar measure for integrating a (non equiv-
ariant) selection in order to obtain the desired equivariant selection. Because the Haar
integral was used, the completeness of the codomain Y and the compactness of the group
G are necessary.

In the present paper, we will give an equivariant version of Michael’s theorem which
also generalizes the result in [5] (Corollary 5.5). The idea is to follow the Michael’s proof:
first we obtain an equivariant near selection (theorems 4.3 and 4.5) and then we use the
same method used in [12, Theorem 1.4.9] to obtain an equivariant selection (proposition 5.2
and corollaries 5.3, 5.4, 5.5 and 5.6).
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2 Preliminaries

If G is a topological group and X is a G-space, for any x ∈ X we denote the stabilizer
subgroup of x by Gx = {g ∈ G | gx = x}. For a subset S ⊂ X and a subgroup H ⊂ G,
H(S) denotes the H-saturation of S, i.e., H(S) = {hs | h ∈ H, s ∈ S}. If H(S) = S then
we say that S is an H-invariant set. In particular, G(x) denotes the G-orbit of x, so that
G(x) = {gx ∈ X | g ∈ G}. The orbit space is denoted by X/G. For any subgroup H ⊂ G,
we will denote by G/H the G-space of cosets {gH | g ∈ G} equipped with the action
induced by left translations.

A G-space X is called proper (in the sense of Palais), if every point x ∈ X has a
neighborhood U such that for any other point y ∈ X there exists a neighborhood V of y
such that {g ∈ G | gU ∩V 6= ∅} has compact closure in G. Each orbit in a proper G-space
is closed, and each stabilizer is compact ([11, Proposition 1.1.4]).

A map f : X → Y between two G-spaces is called equivariant or a G-map if f(gx) =
g(fx) for every x ∈ X and g ∈ G.

Let G be a topological group and X a G-space. A G-space Y is called an equivariant
absolute neighborhood extensor for X (denoted by Y ∈ G-ANE(X)) if, for any closed
invariant subset A ⊂ X and any equivariant map f : A → Y , there exists an invariant
neighborhood U of A in X and an equivariant map F : U → Y such that F |A = f .

Definition 2.1 ([4, Definition 3.1]). A closed subgroup H ⊂ G is called a large subgroup,
if there exists a closed normal subgroup N ⊂ G such that N ⊂ H and G/N is a Lie group.

The large subgroups are characterized in the following result:

Theorem 2.2 ([4, Proposition 3.2]). Let H be a closed subgroup of a locally compact
Hausdorff group G. Then the following conditions are mutually equivalent:

1. H is a large subgroup,

2. G/H is a metrizable G-ANE(X) for every paracompact proper G-space X.

3. G/H is locally contractible.

Let G be a locally compact group. If Y is a proper G-space, then for every point
y ∈ Y the orbit G(y) is G-homeomorphic to G/Gy (see [Proposition 1.1.5, [11]]). This, in
addition with theorem 2.2, yields the following observation:

Observation 2.3. If Y is a proper G space and there is a point y ∈ Y such that its
isotropy group is a large subgroup, then G(y) is a G-ANE for the class of all paracompact
proper G-spaces.

Definition 2.4 ([4, Definition 3.5]). A G-space is called a rich G-space if for any point
x ∈ X and any neighborhood U ⊂ X of x, there exists a point y ∈ U such that the isotropy
group Gy is a large subgroup of G and Gx ⊂ Gy.

Definition 2.5 ([10]). Let G be a topologial group, H ⊂ G a closed subgroup and X a
G-space. A subset S ⊂ X is called an H-slice in X, if:

1. S is H-invariant,
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2. the saturation G(S) is open in X,

3. if g ∈ G \H, then gS ∩ S = ∅,

4. S is closed in G(S).

Theorem 2.6 ([4, Definition 3.6]). Let X be a proper G-space and x ∈ X. Then, for any
neighborhood U of x in X, there exist a compact large subgroup K of G with Gx ⊂ K, and
a K-slice S such that x ∈ S ⊂ U . Moreover, if X is a rich G-space, then there exists a
point y ∈ S such that Gy = K.

Let X and Y be topological spaces. By a multivalued mapping φ from X to Y we
understand a map φ from X into the non empty sets of Y . By the symbol

φ : X ⇒ Y

we shall denote that F is a multivalued map from X to Y ([7]).
A multivalued map φ : X ⇒ Y is called lower semicontinuous (l.s.c.) if for each open

subset V ⊂ Y , the set
φ⇐(V ) = {x ∈ X | φ(x) ∩ V 6= ∅}

is open in X.
Let X and Y be G-spaces. A multivalued funtion φ : X ⇒ Y will be called equivariant,

if
φ(gx) = gφ(x) = {gy | y ∈ φ(x)},

for every x ∈ X and g ∈ G.
A selection for a multivalued map φ : X ⇒ Y is a continuous mapping f : X → Y

such that f(x) ∈ φ(x) for every x ∈ X. If X and Y are G-spaces, a selection f : X → Y
will be an equivariant selection if f is a G-map.

A compatible metric d on a G-space X is called invariant or G-invariant, if d(gx, gy) =
d(x, y) for all g ∈ G and x, y ∈ X.

By a linear G-space we shall mean a real topological vector space on which G acts
continuously and linearly, i.e., g(λx+ µy) = λ(gx) + µ(gy), for every g ∈ G and for all λ
and µ scalars and x, y ∈ X.

We will denote by G-M the class of all proper G-spaces that admit a G-invariant
metric. Let L be a locally convex linear G-space and Y ⊂ L an invariant convex subset
where G acts properly. We will say that (Y, d) belongs to the class G-L if d is a metric in
Y , satisfaying the followings:

1. d is G-invariant,

2. d(x+ z, y + z) = d(x, y) for all x, y ∈ Y and z ∈ L such that x+ y and x+ z belong
to Y ,

3. all open balls determinated by d are convex sets.

If G is compact, it is easy to see that every metrizable convex and invariant subset
of any locally convex linear G-space belongs to the class G-L. The same happens for
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all invariant and convex subsets of any normed linear space where a subgroup of linear
isometries acts.

Finally we will denote by G-P the class of all paracompact proper G-spaces with
paracompact orbit space.

By following the proof of [2, Lemma 1] we can infer the next result:

Lemma 2.7. Let G be a locally compact Hausdorff group and let X be a G space such
that X ∈ P-G. If U is an open invariant covering of X, then there exists a locally finite
open invariant refinement of U .

In the same way, if we follow the proof of [2, Theorem 1] we can prove the following
lemma:

Lemma 2.8. For any open invariant covering {Uα}α∈A of a proper G-space X such
that X ∈ G-P, there exists an invariant partition of unity {pα}α∈A subordinated to the
covering {Uα}α∈A. That means, pα : X → [0, 1] is an invariant continuous map, and
p−1α ((0, 1]) ⊂ Uα, for each α ∈ A.

3 A fixed point theorem

Let G be a compact group and let K ⊂ L a complete convex and invariant subset of
a locally convex, metrizable linear G-space, L. By C(G,K) we denote the space of all
continuous mappings from G into K, equiped with the compact-open topology. In C(G,K)
we can define a continuous action G× C(G,K)→ C(G,K) as follows:

(g, f)→ g ∗ f

where g∗f(h) = gf(h) for every h ∈ G. For each f ∈ C(G,K) and g ∈ G let gf ∈ C(G,K)
be the map definded by the following formula:

gf(h) = f(gh).

Symetrically, we will denote by fg the continuous map in C(G,K) defined by

fg(h) = f(hg).

In [1], the following result is proved which establishes the existence of the vector-valued
integral with respect to the Haar measure:

Proposition 3.1 ([1, Lemma 2]). There exists a continuous mapping
∫

: C(G,K)→ K,
such that

(1)
∫
gf =

∫
f =

∫
fg, for all g ∈ G and f ∈ C(G,K);

(2)
∫
g ∗ f = g

∫
f, for all g ∈ G and f ∈ C(G,K);

(3) if f(g) = x0 ∈ K for every g ∈ G, then
∫
f = x0.

Corollary 3.2. Let G be a compact topological group, and let L be a locally convex,
metrizable linear G-space. If K ⊂ L is a G-invariant complete and convex subset, then
there exists a point a ∈ K such that ga = a for all g ∈ G.
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Proof. Pick an arbitrary point z ∈ K and define f : G→ K as follows:

f(g) = gz.

Let
∫

be the map defined in proposition 3.1. We claim that the point a =
∫
f ∈ K is the

desired point. If g and h are arbitrary elements of G, then we have

g ∗ f(h) = gf(h) = ghz = f(gh) = gf(h).

So that g ∗ f = gf for each g ∈ G. It follows from proposition 3.1 that

ga = g

∫
f =

∫
g ∗ f =

∫
gf =

∫
f = a

for any element g ∈ G. This completes the proof.

4 Equivariant ε-near selections

Definition 4.1 ([7]). Let (Y, d) be a metric space. Let F : X ⇒ Y be a multivalued map
and ε > 0. A continuous mapping f : X → Y is called an ε-near selection if for every
x ∈ X,

d(f(x), F (x)) = inf
y∈F (x)

d(x, y) < ε.

Definition 4.2. Let G be a topological group. Let Y be a convex metric subset of a linear
space where G acts linearly, and let X be an arbitray G-space. We say that Y has the
G-near selection property with respect to X (Y ∈ G-NSP(X)) if every l.s.c. multivalued
equivariant map F : X ⇒ Y with complete and convex values has, for every ε > 0, an
equivariant ε-near selection.

Theorem 4.3. Let G be a locally compact Hausdorff group. Let (Y, d) ∈ G-L and X ∈ G-
P. If Y is a rich G-space, then Y ∈ G-NSP(X).

Before proving theorem 4.3 let us establish the following lemma which is an equivariant
version of [7, Lemma 3.2].

Lemma 4.4. Let G be a locally compact Hausdorff group, δ > 0 and let X and Y be
G-spaces. Supose that there exists a compatible metric d on Y such that (Y, d) ∈ G-M.
Let φ : X ⇒ Y be a lower semicontinuous multivalued equivariant mapping. In adition, let
X0 be an invariant subset of X for which there exists a continuous equivariant mapping
f : X → Y such that f |X0 is an equivariant δ-near selection for φ|X0 . Then for every ε > 0
there is an invariant neighborhood Uε of X0 such that f |Uε is an equivariant δ + ε-near
selection.

Proof. Because d is invariant and φ and f are equivariant, it is easy to see that

Uε =
⋃
x∈X0

f−1(B(f(x0, ε/2)) ∩ φ⇐(B(f(x), δ + ε/2))

is an invariant neighborhood of X0. By [7, [Lemma 3.2] the restriction f |Uε is a δ+ ε-near
selection.
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Proof of Theorem 4.3. Let φ : X ⇒ Y be a l.s.c. multivalued equivariant map with
complete and convex values, and let ε > 0. For each x ∈ X, the stabilizer subgroup of x
is compact ([11, Proposition 1.1.4]). In addition, because φ is equivariant, we have that

φ(x) = φ(gx) = gφ(x), for all g ∈ Gx.

So, Gx is a compact group acting continuously and linearly in the complete and convex
subset, φ(x). By corollary 3.2, there is a point ax ∈ φ(x) such that gax0ax for every
g ∈ Gx. Now, the maping µx : G(x) → Y defined by µx(gax) = gax is well defined. It is
not dificult to see that mx is an equivariant selection for φ|G(x).

By theorem 2.6 and since Y is a rich G-space, there exists a point yx ∈ B(ax, ε/2) ⊂ Y
and there exists a Gyx-slice Sx ⊂ B(ax, ε/2) by y, such that ax ∈ Sx and Gyx is a large
subgroup containing Gx. Let rx : G(Sx) → G(yx) the equivariant retraction defined by
rx(gs) = gyx for all g ∈ G and s ∈ Sx. We can observe that

d(r(ax), ax) = d(y, ax) ≤ ε/2.

Now we define a new maping fx : G(x) → G(yx) by fx(z) = rx(µx(z)). Clearly fx is
continuous and equivariant. Therefore,

d(fx(gx), φ(gx)) ≤ d(fx(gx), gax) = d(rx(µx(gx), gax) = d(gyx, gax) = d(yx, ax) < ε/2.

Therefore fx is an equivariant ε/2-near selection for φ|G(x). By observation 2.3, G(yx) is
a G-ANE for the class of all paracompact proper G-spaces and there exists an invariant
neighborhood Wx of G(x) and Fx : Wx → Y a continuous and equivariant extension of fx.
By lemma 4.4, there exists an invariant neighborhood Ux ⊂ Wx of G(x) such that Fx|Ux
is an equivariant ε-near selection.

Let us do this for every x ∈ X. The family {Ux}x∈X is an open invariant covering
of X. By lemma 2.7 there exists a locally finite open invariant refinement, {Oα}α∈A of
{Ux}x∈X . For each α ∈ A, pick a x(α) ∈ X, such that Oα ⊂ Ux(α). Now, for each α ∈ A,
we extend the maping Fx(α)|Oα as follows:

Fα(z) =

{
Fx(α)(z), if z ∈ Oα,
y0, if z ∈ X \Oα,

where y0 is an arbitrary point in Y . By lemma 2.8, there exists a partition of unity
{pα}α∈A subordinated to {Oα}α∈A such that each pα : X → [0, 1] is an invariant map.

The desired ε-near selection f : X → Y can now be defined by

f(x) =
∑
α∈A

pα(x)F̃α(x).

To see that this works, we observe first that each x ∈ X has a neighborhood V intersecting
only finitely many Oα. In this V , f can be seen as the sum of finitely many continuous
maps, and therefore, f is continuous in X. Furthermore, for each z ∈ X, let Q(z) be the
subset consiting of all α ∈ A such that z ∈ Oα. Since pα(z) = 0 for every α /∈ Q(z), then
we have

f(z) =
∑

α∈Q(z)

pα(z)F̃α(z).
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Moreover, if α ∈ Q(z), then z ∈ Oα, which means that F̃α(z) = Fx(α)(z). So, we can write
f(z) as follows:

f(z) =
∑

α∈Q(z)

pα(z)Fx(α)(z).

Since Oα is an invariant subset, we have that gz ∈ Oα if and only if z ∈ Oα. As a
consequence Q(z) = Q(gz), for every z ∈ X and for all g ∈ G. Now, by using the linearity
of the action we observe that

f(gz) =
∑

α∈Q(gz)

pα(gz)Fx(α)(gz) =
∑

α∈Q(z)

pα(z)gFxα(z)

= g

 ∑
α∈Q(z)

pα(z)Fx(α)(z)

 = gf(z).

This proves that f is equivariant. We have still to prove that f is an ε-near selection for
φ(x). To this purpose, we must remember that for every z ∈ X, and for every α ∈ Q(z),
the point Fx(α)(z) belongs to the convex set Nε(φ(z)) = {y ∈ Y | d(y, φ(z)) < ε}. So, f(z)
is a convex linear combination of finitely many Fx(α)(z), all of which lie in the convex set
Nε(φ(z)), hence f(z) ∈ Nε(φ(z)). This completes the proof of the theorem.

Theorem 4.5. Let G be a locally compact Hausdorff group. Let Y ∈ G-L and X ∈ G-P.
If Y ∈ G-ANE(X), then Y ∈ G-NSP(X).

Proof. Copy the prove of theorem 4.3 as far as the construction of the map µx. Since Y is
a G-ANE(X) we can extend the map µx directly to a continuous and equivariant mapping
Fx defined on an invariant neighborhood Wx of G(x). Now the proof follows by copying
word by word the rest of the proof of theorem 4.3.

Corollary 4.6. Let G be a compact group. Let L be a Banach space where G acts con-
tinuously and linearly. Thus L ∈ G-NSP(X) for every paracompact G-space X.

Proof. The corollary follows immediately from theorem 4.5 and the following lemma 4.7.

Lemma 4.7. Let G be a compact group acting linearly and continuously in a Banach
space L. L is a G-ANE(X) for every paracompact G-space X.

Proof. Let A ⊂ X be a closed subset of X, and let f : A → L be a continuous and
equivariant map. By [9] L is a ANE(X), meaning that there exists a continuous mapping
F : X → L such that F |A = f . Lets consider now the map Φ : X → C(G,L) defined
by Φ(x)(g) = g−1F (gx). The mapping Φ is continuous (see [8, p.95]). Finally we define
φ(x) =

∫
Φ(x), where

∫
is the mapping of proposition 3.1. We claim that φ is the desired

map. First, φ is the composition of two continuous maps, so φ is continuous too.
If a ∈ A then Φ(a)(g) = g−1F (ga) = g−1f(ga) = g−1(gf(a)) = f(a). That means that

Φ(a) ∈ C(G,L) is a constant map. By proposition 3.1 we have φ(a) =
∫

Φ(a) = f(a)
which proves that φ|A = f . It remains to prove that φ is equivariant. First we observe
that

Φ(hx)(g) = g−1F (ghx) = h(gh)−1F (ghx) = h(Φ(x)(gh)) = (h ∗ Φ(x))(gh),
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for every h, g ∈ G and x ∈ X. Therefore, Φ(hx) = (h ∗Φ(x))h. Finally, by proposition 3.1
we have

φ(hx) =

∫
Φ(hx) =

∫
(h ∗ Φ(x))h =

∫
h ∗ Φ(x) = h

∫
Φ(x) = hφ(x).

This proves that φ is equivariant and now the proof is complete.

Corollary 4.8. Let G be a compact Lie group. Let L be a locally convex metrizable linear
G-space. If Y ⊂ L is an invariant convex subset, then Y ∈ G-NSP(X) for every metrizable
G-space X.

Proof. By [2, Theorem 1] Y is a G-ANE(X). Now the corollary follows directly from
theorem 4.5.

5 Equivariant Selections

Analogously as we have defined the G-near selection property, we can define the selection
property in the following way:

Definition 5.1. Let G be a topological group. Let Y be convex metric subset linear space
where G acts linearly, and let X be an arbitray G-space. We say that Y has the G
selection property respect to X (Y ∈ G-SP(X)) if every l.s.c. multivalued equivariant map
φ : X ⇒ Y with complete and convex values admits an equivariant selection.

Proposition 5.2. Let G be a locally compact Hausdorff group. Let (Y, d) ∈ G-L. If
Y ∈ G-NSP(X) for some G-space X, then Y ∈ G-SP(X).

Proof. Let φ : X ⇒ Y be a l.s.c. multivalued equivariant map with complete and convex
values. We will construct, by induction, a sequence of continuous and equivariant maps
fn : X → Y such that, for every x ∈ X,

(a) d(fn(x), fn+1(x)) < 2−(n−1), (n = 1, 2, . . . ),

(b) d(fn(x), φ(x)) < 2−n, (n = 1, 2, . . . ).

Since Y ∈ G-NSP(X), there exists an equivariant 1/2-near selection f1 : X → Y . This
map satisfies (b). Suppose that f1, . . . , fn have been constructed and satisfy (a) and (b).
In order to construct the map fn+1, let us define φn : X ⇒ Y as follows:

φn(x) = φ(x) ∩B(fn(x), 2−n).

By [12, lemma 1.4.6], φn is a l.s.c. multivalued map. In addition, for each x ∈ X,
φn(x) is a closed subset of the complete set φ(x), so φn(x) is itself complete. Since the
balls defined by the metric d are convex, and since φ(x) is convex too, we can infer that
φ(x) is a convex subset of Y .

Finally, the invariance of the metric d and the equivariance of the map fn, tell us that

gφn(x) = g(φ(x) ∩B(fn(x), 2−n)) = gφ(x) ∩ gB(fn(x), 2−n) = φ(gx) ∩B(fn(gx), 2−n),
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which means that φn is equivariant. Now we can aply the fact that Y ∈ G-NSP(X) to find
an equivariant 2−(n+1)-near selection for φn, let us say fn+1 : X → Y . Since φ(x) ⊂ φ(x),
we have that

d(fn+1(x), φ(x)) ≤ d(fn+1(x), φn(x)) < 2−(n+1).

Then, fn+1 satisfies condition (b). In the other hand, φn(x) ⊂ B(fn(x), 2−n). Then

d(fn+1(x), fn(x)) ≤ d(fn+1(x), φn(x)) + d(φn(x), fn(x)) < 2−(n+1) + 2−n < 2−n+1,

which is (a). This completes the construction by induction.
We claim that lim

n→∞
fn(x) exists and belongs to φ(x), for every x ∈ X. In order to see

this, take an arbitrary x ∈ X. By (b), for every n ∈ N there exists a point an ∈ φ(x) such
that d(fn(x), an) < 2−n. Let us consider the sequence (an)n∈N ⊂ φ(x). By (a), we have

d(an, an+1) ≤ d(an, fn(x)) + d(fn(x), fn+1(x)) + d(fn+1(x), an+1(x)) < 2−(n−2).

Therefore (an)n∈N is a Cauchy sequence contained in the complete subset φ(x). We con-
clude that lim

n→∞
an exists and belongs to φ(x). Since d(fn(x), an) < 2−n for every n,

this implies that lim
n→∞

fn(x) = f(x) also exists and is equal to lim
n→∞

an. This means

that f(x) ∈ φ(x). By (a), the secuence (fn)n∈N is uniformly Cauchy and thus converges
uniformly to f . This implies that f is continuous.

Finally, for every g ∈ G and x ∈ X, we have

f(gx) = lim
n→∞

fn(gx) = lim
n→∞

gfn(x) = g
(

lim
n→∞

fn(x)
)

= gf(x).

This proves that f is an equivariant selection for φ, meaning that Y ∈ G-SP(x) as we
desired.

In addition with theorems 4.3 and 4.5 and corollaries 4.6 and 4.8, proposition 5.2 gives
us the following and last results:

Corollary 5.3. Let G be a locally compact Hausdorff group. Let Y ∈ G-L and X ∈ G-P.
If Y is a rich G-space, then Y ∈ G-SP(X).

Corollary 5.4. Let G be a locally compact Hausdorff group. Let Y ∈ G-L and X ∈ G-P.
If Y ∈ G-ANE(X), then Y ∈ G-NSP(X).

Corollary 5.5. Let G be a compact group. Let L be a linear G-space. If L is a Banach
space, then L ∈ G-SP(X) for every paracompact G-space X.

Corollary 5.6. Let G be a compact Lie group. Let L be a locally convex metrizable linear
G-space. If Y ⊂ L is any invariant convex subset, then Y ∈ G-SP(X) for every metrizable
G-space X.
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