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Abstract

Let K be an uncountable metric compact space. It is well known that C(K)
is isometrically universal for the separable Banach spaces, but the continuous
functions that compose the isometric image of finite dimensional spaces are
typically far from being Lipschitz. We prove that the possibility of embedding
euclidean spaces Rn ↪→ C(K) in such a way that the image in C(K) is
made of Lipschitz functions is tightly related to the dimension (topological
or Hausdorff) of K.
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1. Introduction

Throughout the paper all the Banach spaces considered are real. We
shall denote by K a compact Hausdorff space and C(K) will be the Banach
space of real continuous functions defined on K endowed with the supremum
norm. The real unit interval is denoted by I. We shall consider I and its
finite powers with the euclidean distance. As usual, if X is a Banach space
we shall denote by BX its closed unit ball, and by SX its unit sphere. For
any unexplained concepts or notations about Banach spaces we address the
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reader to [6] or [16].

A classical result of Banach and Mazur [6, Theorem 5.8] says that C[0, 1] is
isometrically universal for the class of separable Banach spaces. In particular,
the euclidean spaces (Rn, ‖·‖2) can be found isometrically as subsets of func-
tions defined on [0, 1]. For n = 2 an isometric embedding J : R2 → C[0, 1]
can be written explicitly as J(x1, x2)(t) = x1 cos(πt) + x2 sin(πt), using C∞

functions. As we see later, an isometric embedding of R3 cannot be writ-
ten explicitly using such simple functions. In fact, Peano curves are needed
as was first noticed in 1957 by Donoghue [4]. However, R3 is isometrically
embedded into C([0, 1]2) by means of the formula

J(x1, x2, x3)(t, s) = x1 cos(πt) cos(πs) + x2 sin(πt) cos(πs) + x3 sin(πs).

We will see that the possibility of finding an “easy formula” for an isometric
embedding of Rn into C(K) is related to the dimension of K.

If K1 and K2 are uncountable metrizable compacta, then C(K1) and
C(K2) are isomorphic by Milutin’s theorem [16, III.D.19]. These Banach
spaces cannot be isometric unless K1 and K2 are homeomorphic. On the
other hand, C(K1) and C(K2) are universal spaces for the class of separable
spaces in the isometric category. In particular C(K1) contains an isometric
copy of C(K2) and vice versa. In particular, that means that it is not possi-
ble to distinguish between K1 and K2 by isometric embeddings of test spaces.

Our idea is to relate properties of a compact K to the existence of iso-
metric embeddings J : X → C(K) of finite dimensional linear spaces X such
that the set J(X) is composed of “nice” functions. Here nice will mean Lips-
chitz at least, and the requirement of finite dimension is necessary. Indeed, it
is easy to see that if the isometric embedding J(X) is composed of Lipschitz
functions, then X must be of finite dimension (Proposition 2.1). The next
result shows the relation between K and the existence of nice embeddings of
Rn.

Theorem 1.1. Let (K, d) be an uncountable metric compact space and n ∈
N. The following are equivalent:

(i) There is an onto Lipschitz mapping φ : K → In.
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(ii) C(K) contains an isometric copy of any (n + 1)-dimensional Banach
space made of Lipschitz functions.

(iii) C(K) contains an isometric copy of the euclidean space (Rn+1, ‖ · ‖2)
made of Lipschitz functions.

Moreover, if K has a compatible structure of Lipschitz manifold, then state-
ments (i), (ii) and (iii) are also equivalent to

(iv) dim(K) ≥ n.

We follow [11] for the definition of Lipschitz manifold (with boundary).
Compatible structure of Lipschitz manifold guarantees that the charts are
bi-Lipschitz between the global metric d and the local metric. Sullivan [14]
proved that n-dimensional topological manifolds have a Lipschitz structure
for n 6= 4. In any case, we need to fix a metric on K since topologically
equivalent metrics on K are in general not Lipschitz equivalent. If K is not
a Lipschitz manifold, we may still obtain information about K from the pre-
vious result using other notions of dimension. If we consider the Hausdorff
dimension on K, then statement (i) clearly implies that the Hausdorff di-
mension of K is greater or equal than n (see [7, Corollary 2.4]). On the other
hand, a recent result of Keleti, Máthé and Zindulka [9] says that if the Haus-
dorff dimension of K is strictly greater than n, then statement (i) holds.
Unfortunately, the existence of a Lipschitz mapping onto a cube does not
characterize the Hausdorff dimension as showed by the example constructed
by Vitušhkin, Ivanov and Melnikov [15]. If K is ultrametric, then statement
(i) implies that the Hausdorff dimension is at least n by another result of [9].

In the case of smooth manifolds, the regularity of the functions composing
the isometric copy of the euclidean space is as good as possible.

Theorem 1.2. Let K be a compact Cr-manifold for r = 1, . . . ,∞ of dimen-
sion n− 1 for n ≥ 2. Then

(a) C(K) contains an isometric copy of (Rn, ‖ · ‖2) made of Cr-smooth
functions;

(b) C(K) contains no isometric copy of (Rn+1, ‖ · ‖2) made of C1-smooth
functions or Lipschitz functions.
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We have chosen the euclidean space as test space because of its easiness,
but any finite dimensional space with strictly convex dual will work as a
test space. On the other hand, polyhedral spaces can always be isometrically
embedded using nice functions. Recall that a finite dimensional Banach space
is polyhedral if its unit ball is a convex polytope.

Theorem 1.3. If K is an infinite metric compact space, then C(K) con-
tains isometric copies made of Lipschitz functions of any finite dimensional
polyhedral space.

The proofs of these results depend on some easy facts about Lipschitz
maps, Lipschitz manifolds and isometric embeddings into C(K) spaces that
we will develop in the next section. We finish the paper with some remarks
about extending the results for Hölder maps and the typical n-dimensional
subspaces of C(K).

2. Auxiliary results

We denote by L(K, d) the Lipschitz functions (with respect to d) of C(K).
The Lipschitz constant for f ∈ L(K, d) is the number

L(f) = sup

{
|f(t1)− f(t2)|

d(t1, t2)
: t1, t2 ∈ K, t1 6= t2

}
.

Proposition 2.1. Let X ⊂ C(K) be a non trivial linear subspace. Then
either

(a) X ∩ L(K, d) is of first category in X;

(b) or X ⊂ L(K, d), X is finite dimensional and there exists λ > 0 such
that L(f) ≤ λ‖f‖ for every f ∈ X.

Proof. Observe that X∩L(K, d) =
⋃∞
n=1{f ∈ X : L(f) ≤ n} is a decomposi-

tion into countably many closed balanced convex sets. If X∩L(K, d) is not of
first category in X, then there is δ > 0 such that δBX ⊂ {f ∈ X : L(f) ≤ n}
for some n ∈ N. By homogeneity, we have L(f) ≤ λ‖f‖ with λ = δ−1n
for every f ∈ X. In particular X ⊂ L(K, d). Note that BX is a complete,
bounded and equicontinuous set of functions, and hence it is compact by
Ascoli’s theorem [10]. Therefore X must be of finite dimension.
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Recall that given a linear operator T : X → Y between Banach spaces,
the adjoint operator T : Y ∗ → X∗ is the linear map defined by the rule

T ∗(y∗)(x) = y∗(T (x)).

If T is bounded then T ∗ is also bounded and ‖T‖ = ‖T ∗‖.
On the other hand, observe that K is naturally embedded in C(K)∗ if

we define k : C(K) → R as k(f) := f(k) for every k ∈ K. In this case, we
always have that K ⊂ BC(K)∗ .

Proposition 2.2. Let J : X → C(K) be an isomorphic embedding. Then
J(X) ⊂ L(K, d) if and only if J∗|K is Lipschitz from d to the norm of X∗,
where J∗ denotes the adjoint map from C(K)∗ into X∗.

Proof. If J∗ is Lipschitz, then any function J(x) is Lipschitz as well, since
J(x)(t) = J∗(t)(x). Reciprocally, assume that J(X) ⊂ L(K, d). By Propo-
sition 2.1 there is λ > 0 such that L(f) ≤ λ for every f ∈ J(X). Now, if
x ∈ BX and t1, t2 ∈ K then

|J∗(t1)(x)− J∗(t2)(x)| = |J(x)(t1)− J(x)(t2)| ≤ λ d(t1, t2).

Taking supremum on x ∈ BX we get ‖J∗(t1)− J∗(t2)‖ ≤ λ d(t1, t2).

Remark 2.3. A function f : K → R is said to be α-Hölder for α ∈ (0, 1]
if there is a constant λ > 0 such that |f(x) − f(y)| ≤ λ d(x, y)α for any
x, y ∈ K. It is easy to see that the Lemma 2.1 and Proposition 2.2 can be
generalized to the setting of α-Hölder functions.

The set of extreme points of a convex set C is denoted by Ext(C).

Proposition 2.4. Let X be a Banach space and let J : X → C(K) be a
linear operator with ‖J‖ ≤ 1. Then J is an isometric embedding if and only
if

Ext(BX∗) ⊂ J∗(K) ∪ (−J∗(K)).

Proof. Note that, in general, J : X → Y is an isometric embedding if and
only if J∗(BY ∗) = BX∗ (the less easy part relies on the Hahn–Banach theo-
rem). Hence we have just to check that the statement above is equivalent to
BX∗ = J∗(BC(K)∗). Clearly, ‖J∗‖ = ‖J‖ ≤ 1 implies that J∗(BC(K)∗) ⊂ BX∗ .
On the other hand, if Ext(BX∗) ⊂ J∗(BC(K)∗), then BX∗ ⊂ J∗(BC(K)∗) by
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the Krein–Milman Theorem [6, Theorem 3.65].
For the converse implication, observe that

J∗(BC(K)∗) = J∗(convw
∗
(K ∪ (−K))) = convw

∗
(J∗(K ∪ (−K)))

by the weak∗ continuity of J∗. Therefore, if BX∗ = J∗(BC(K)∗), and then
Ext(BX∗) ⊂ J∗(K ∪ (−K)) by Milman’s Theorem [6, Theorem 3.66].

Corollary 2.5. Let X be a Banach space. There exists an isometric em-
bedding of X into C(K) if and only if there exists a continuous mapping
Ψ : K → BX∗ such that

Ext(BX∗) ⊂ Ψ(K) ∪ (−Ψ(K)).

Proof. If such an isometric embedding J : X → C(K) exists, then Ψ = J∗|K .
For the other implication, define J(x)(t) = Ψ(t)(x). Evidently, J is a linear
operator with ‖J‖ ≤ 1 that satisfies J∗|K = Ψ. So, by Proposition 2.4, it is
an isometric embedding.

The first part of the following result is due to Donoghue [4] who used it
for the construction of Peano-type filling curves.

Corollary 2.6. Let X be a Banach space such that X∗ is strictly convex and
let J : X → C(K) be an isometric embedding. Then

SX∗ ⊂ J∗(K) ∪ (−J∗(K)).

Moreover, there exists t1, t2 ∈ K such that J(x)(t1) = −J(x)(t2) for every
x ∈ X.

Recall that a Banach space X is strictly convex if given x, y ∈ SX , with
x 6= y then ‖x+y

2
‖ < 1.

Proof. In this case Ext(BX∗) = SX∗ . Therefore SX∗ ⊂ J∗(K) ∪ (−J∗(K)).
But the connection of SX∗ implies that J∗(K) ∩ (−J∗(K)) 6= ∅. Take x∗ ∈
J∗(K) ∩ (−J∗(K)) and t1, t2 ∈ K such that J∗(t1) = x∗ and J∗(t2) = −x∗.
Thus, for every x ∈ X we have that J(x)(t1) = J∗(t1)(x) = −J∗(t2)(x) =
−J(x)(t2), as desired.

Before proving the main theorem, let us establish the following easy
lemma
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Lemma 2.7. Let K be a k-dimensional Lipschitz manifold. Then k ≥ n if
and only if there exists a Lipschitz onto map f : K → In.

Proof. Since K is a k-dimensional Lipschitz manifold, we can find a finite
cover {O1, O2, . . . , Om} of K each member of which is bi-Lipschitz homeo-
morphic to Ik. In particular, there exists a Lipschitz onto map φ : O1 → Ik.
Since Ik is an absolute Lipschitz retract, by [2, Proposition 1.2] we can find a
Lipschitz (onto) extension F : K → Ik of φ. Now, if k ≥ n, the projection in
the first n-coordinates p : Ik → In is a Lipschitz map with Lipschitz constant
1. Therefore, the composition p ◦ F : K → In is a Lipschitz map, which
proves the first implication.

Now assume that f : K → In is a Lipschitz onto map. Since {f(Oi)}mi=1 is
a cover of In by compact sets, there must exist i ∈ {1, . . . ,m} such that f(Oi)
has non-empty interior in In. Thus, we can find a closed cube B ⊂ f(Oi)
Lipschitz homeomorphic to In. Therefore B is an absolute Lipschitz retract,
and then we can find a Lipschitz retraction r : f(Oi) → B. Finally observe
that the composition r ◦ f |Oi

: Oi → B is a Lipschitz map and this can only
be possible if k ≤ n.

3. Proofs of the main results and final remarks

Proof of Theorem 1.1. (i)⇒(ii) If X is (n + 1)-dimensional, the dual sphere
SX∗ is a Lipschitz manifold of dimension n. There exists a Lipschitz mapping
ψ : In → SX∗ such that SX∗ ⊂ ψ(In) ∪ (−ψ(In)). For x ∈ X, consider the
function J(x) ∈ C(K) given by J(x)(t) = ψ(φ(t))(x). Clearly, J∗(K) =
ψ(In), and so J is an isometric embedding by Corollary 2.5.

(ii)⇒(iii) is trivial. (iii)⇒(i) Assume that X = (Rn+1, ‖ · ‖) embeds
into C(K) with an isometric embedding J . If J(X) ⊂ L(K, d), then J∗ is
Lipschitz by Proposition 2.1. Now, by Corollary 2.6 we have

SX∗ ⊂ J∗(K) ∪ (−J∗(K)).

That implies the existence of a point x∗ ∈ SX∗ and δ > 0 such that SX∗ ∩
B[x∗, δ] ⊂ J∗(K). We may suppose that δ is small enough to guarantee that
SX∗ ∩ B[x∗, δ] is Lipschitz homeomorphic to In. Therefore SX∗ ∩ B[x∗, δ]
is an absolute Lipschitz retract. If ψ is a Lipschitz retraction of BX∗ onto
SX∗ ∩B[x∗, δ], then ψ ◦J∗ is a Lipschitz mapping from K onto SX∗ ∩B[x∗, δ]
which is Lipschitz homeomorphic to In. This proves the desired implication.
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Finally if K is a Lipschitz manifold, implication (i)⇔ (iv) follows imme-
diately from Lemma 2.7.

Proof of Theorem 1.3. If X is polyhedral and finite dimensional, its dual X∗

is also polyhedral and so Ext(BX∗) = {x∗1, . . . , x∗N} is a finite set. Take
different points {tn}Nn=1 ⊂ K and disjointly supported Lipschitz functions
ψn : K → [0, 1] such that ψn(tm) = 0 if n 6= m and ψn(tn) = 1. The mapping
Ψ : K → BX∗ given by Ψ(t) =

∑N
n=1 ψn(t)x∗n is well defined and Lipschitz.

The linear operator J : X → C(K) defined by J(x)(t) = Ψ(t)(x) satisfies
that ‖J‖ ≤ 1 and J∗(t) = Ψ(t) for every t ∈ K, and thus Ext(BX∗) ⊂ J∗(K).
By Corollary 2.5, J is an isometric embedding.

Proof of Theorem 1.2. Denote Rn with the euclidean norm by X. If K is a
(n− 1)-dimensional Cr-manifold, then there is H ⊂ K compact which is Cr-
homeomorphic to In−1 and such that there exists a Cr-smooth retraction ψ :
K → H. Find a C∞-smooth mapping φ : H → SX∗ such that SX∗ ⊂ φ(H)∪
(−φ(H)). Define J : X → C(K) by J(x)(t) = φ(ψ(t))(x). Clearly J(x) is a
Cr-smooth function and J is an isometric embedding by Corollary 2.5, and
completes the proof of (a).
If C(K) contains an isometric copy of (Rn+1, ‖·‖) made of Lipschitz functions
(in particular, if they are C1-smooth), then there is a Lipschitz mapping of
K onto In, and so dim(K) ≥ n.

We will finish with some remarks:

(1) There exist Peano’s filling curves in the Hölder class, see [13, Theo-
rem 3.1] for instance, where it is shown that there is an 1/2-Hölder surjection
from I onto I2. Note that such a map with small modifications and the help
of Corollary 2.5 provides an embedding of (R3, ‖ · ‖2) into C[0, 1] made of
1/2-Hölder functions. Indeed, if φ : I → I2 is onto and 1/2-Hölder, write
φ = (τ, σ) and note that J : R3 ↪→ C[0, 1] defined by

J(x1, x2, x3) = x1 cos(πτ) cos(πσ) + x2 sin(πτ) cos(πσ) + x3 sin(πσ)

is an isometric embedding made of 1/2-Hölder functions.

(2) Hausdorff dimension has a good behavior under Hölder maps, [7, Propo-
sition 2.3]. Therefore it would be possible to obtain information about the
Hausdorff dimension of a metric compact K from the dimension of its Hölder
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euclidean subspaces, as in Theorem 1.1. This observation combined with Re-
mark 2.3 and the ideas from the previous remark can be used to generalize
Theorem 1.1 in Hölder case.

(3) In the remaining remarks we will use the techniques about isometric
embeddings into C(K) spaces to understand how a “typical” n-dimensional
subspace of C(K) looks like. Let us start by recalling that the strictly convex
norms are generic in the following sense: the set of strictly convex norms on
a separable Banach space is a dense Gδ-set in the metric space of equivalent
norms endowed with the Banach-Mazur distance. In particular, the “generic
norm” on Rn is strictly convex and smooth. Baire category theorem allows
us to blend generic properties of norms, see the Asplund averaging technique
[3, p. 52].

(4) However, a “typical” n-dimensional subspace of C[0, 1] is far from being
smooth. A subspace of C(K) of dimension equal or less than n is determined
by n “random” functions {f1, . . . , fn} ⊂ C(K). Putting F = (f1, . . . , fn)
this is an element F ∈ C(K,Rn), and name XF = span{f1, . . . , fn}. Let JF
be the mapping from Rn into C(K) given by

JF (x1, . . . , xn) = x1f1 + · · ·+ xnfn

and endow Rn with the seminorm pF (x1, . . . , xn) = ‖x1f1 + · · · + xnfn‖∞.
If XF has dimension n, then JF is the isometric embedding of (Rn, pF ) into
C(K). Clearly, we have J∗F |K = F . Suppose that XF has strictly convex
dual, then the radial boundary of F (K) ∪ (−F (K)) should be a (n − 1)-
dimensional sphere, by Corollary 2.6. This seems to be “highly unlikely”.
Indeed, in [1] the authors proved that from a generic point of view the Haus-
dorff dimension of F (K) for F ∈ C(K,Rn) is the minimum of n and the
topological dimension of K. In particular, if K = [0, 1], the set F (K) has
generic Hausdorff dimension 1. That implies for n > 2 that X∗F is generically
far from being strictly convex.

(5) Finally, we may compare two n-dimensional subspaces of C(K) by mea-
suring the Hausdorff distance dH between their unit balls (or spheres). Recall
that this way of measuring the distance between subspaces of a Banach space
was introduced by Kadets in [8]. Following the notation above, the next two
observations show that the relation between F and XF is continuous back
and forth (we omit the elementary proofs)
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(a) Given F ∈ C(K,Rn) such that XF is n-dimensional and ε > 0, there
is δ > 0 such that for any G ∈ C(K,Rn) with ‖F − G‖∞ < δ, then
dH(XF , XG) < ε.

(b) Given F ∈ C(K,Rn) and ε > 0, there is δ > 0 such that if X ⊂ C(K)
satisfies that dH(XF , X) < δ, we can then find G ∈ C(K,Rn) with
X = XG and ‖F −G‖∞ < ε.

Now, consider the space of n-dimensional subspaces of C[0, 1], equipped
with the topology induced by dH (in the sense of Kadets). In this case,
polyhedral subspaces are dense, however smooth subspaces are not dense for
n ≥ 2. Indeed, given ε > 0 and XF a n-dimensional subspace of C[0, 1],
by observation (a) we can find G ∈ C(I,Rn) close enough to F in order
that dH(XF , XG) < ε and such that conv(G(I)) has finitely many extreme
points. This implies that X∗G is polyhedral and thus XG is polyhedral too.
To prove the other statement consider a subspace XF such that F (I) is far
from its convex hull (for example if F (I) is a star). Fix ε > 0 such that
(F (I)∪ (−F (I)))+εBRn is not convex. Any subspace X ⊂ C(I) close enough
to XF is of the form X = XG with ‖G− F‖∞ < ε by observation (b). With
such a choice, G(I)∪(−G(I)) ⊂ (F (I)∪(−F (I)))+εBRn is far from containing
the boundary of a large convex body, and so BX∗ = conv(G(I) ∪ (−G(I)))
cannot be strictly convex. Therefore X is not smooth by Šmulyan’s duality
[3, Proposition 1.6] or [6, Corollary 7.23].
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[6] M. Fabian, P. Habala, P. Hájek, V. Montesinos and V. Zi-
zler, Banach Space Theory. The Basis for Linear and Nonlinear Anal-
ysis. CMS Books in Mathematics, Springer, New York, 2011.

[7] K. Falconer, Fractal Geometry. Mathematical Foundations and Ap-
plications, 2nd edition, Wiley, 2003.

[8] M. I. Kadets, Note on the gap between subspaces, (Russian)
Funkcional. Anal. i Ego Prilozheniya, 9, No. 2 (1975), 73?74.
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