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Abstract

We study shadow boundaries of submanifolds of Riemannian mani-
folds admitting a closed conformal vector field. As applications we give
a method to find a principal direction in a compact hypersurface and a
characterization of totally umbilical hypersurfaces in space forms.

1 Introduction

Given a Riemannian manifold N , an immersed submanifold M and a vector
field Y in N , the notion of the shadow boundary of M is a natural one: It
is the set of points of M such that Y is tangent to M . This concept appears
already in 1990, in an article [2] by J. Choe, under the name of horizon (see
Definition 2.1 there) where he applied it to the study of minimal surfaces.

In [4], M. Ghomi investigated a very close concept, the shadow. Given a
fied unit vector in R3, or equivalently, a parallel vector field v, the shadow of an
orientable surface in R3 with respect to v is the set of points of the surface such
that the sign of the angle between v and a given nowhere zero global normal
vector field to the surface does not change. The relation between these con-
cepts is that a shadow is an open set in the complement of a shadow boundary.

In a more general setting, we have to impose some conditions on the am-
bient space N and on the vector field Y in order to obtain some relevant
geometrical information. For example, the paper [6] of the second named
author contains some properties of shadow boundaries of submanifolds with
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respect to a parallel vector field in a Riemannian manifold.

In this work we investigate shadow boundaries of hypersurfaces with re-
spect to a closed conformal vector field in the ambient, a concept which in-
cludes as a particular case that of a parallel vector field. In fact, we show that
space forms are the first examples of manifolds admitting plenty of closed con-
formal vector fields; see Proposition 3.4. Our work is mainly inspired in the
paper [3] about compact shadow boundaries of a hypersurface in Euclidean
space. Here we extend some of the results in [3] to more general spaces, in
particular to any space form.

In general, a shadow boundary is a closed subset of a hypersurface M .
In the case here considered using closed conformal vector fields to construct
shadow boundaries, we give first in Proposition 3.1 a condition on the shape
operator of the immersion M ⊂ N for a shadow boundary to be a submanifold
of M . As a particular case of this proposition, we obtain for a hypersurface
with nowhere zero Gauss-Kronecker curvature that every shadow boundary is
a submanifold of M .

In Proposition 4.1 we give a characterization of a principal direction of
a hypersurface M in a space form via shadow boundaries. Namely, given a
closed conformal vector field Y , the vector Yp ∈ TpM dfines a principal direc-
tion of M if and only if the (regular) shadow boundary S∂(M,Y ) is orthogonal
to the vector field Y . A useful corollary of this result (see Corollary 3.8) says
that a surface in a three dimensional manifold with the property that every
shadow boundary is a line of curvature must be totally umbilical.

Our main result here is Theorem 4.5 and relates shadow boundaries to the
geometry of a submanifold: Given a compact hypersurface with nowhere zero
Gauss-Kronecker in a space form, if for each point of M and every direction Yp
there exists a corresponding shadow boundary making a constant angle with
respect to Y , then M must be totally umbilical.

2 Preliminaries

In this section we fix our notation. Our ambient space (Nn+1, 〈 , 〉) will be a
Riemannian manifold with connection D.

Definition 2.1. Let M be an immersed submanifold of N , and let Y : N →
TN be a vector field in N . The shadow boundary of M with respect to Y is
the following subset of M :

S∂(M,Y ) = {p ∈ M | Yp ∈ TpM}. (1)
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In [2], J. Choe gave the above definition of shadow boundary of Riemannian
submanifolds, calling it horizon. Using the generalized Morse index theorem,
he related this concept with the index of stability of a complete minimal surface
in R3.

In this paper we will work with Riemannian manifolds which admit a closed
conformal vector field Y .

Definition 2.2. We say that Y is a closed conformal vector field if there exist
ϕ : N → R smooth such that for every vector field X in N we have

DXY = ϕX,

where D is the Levi-Civita connection of N .

For example, if Y is parallel we can take ϕ = 0. In the Euclidean space
Rn+1, if Y is a radial vector field, the corresponding ϕ is constant equal to
one. This means that in particular, our results hold for constant (i.e., parallel)
and radial vector fields in Rn+1.

Hereafter Y will denote a closed conformal vector field in N . We will
suppose that Y does not vanish on the submanifold M .

3 Closed conformal vector fields and shadow bound-

aries

In general a shadow boundary is just a closed subset of M . The next result
says that the shadow boundary is a smooth submanifold of M in a region
when the Gauss-Kronecker curvature is different from zero.

Proposition 3.1. Let M be an oriented immersed hypersurface in N and Y a

closed conformal vector field in N . Let p be a point in S∂(M,Y ) where either

of the following conditions hold:

• The shape operator satisfies A(Yp) 6= 0; or

• The Gauss-Kronecker curvature of M is not zero at p.

Then there exists a neighbourhood U of p in M such that S∂(M,Y ) ∩ U is a

hypersurface of M .

Proof. Let ξ be a unit vector field which is everywhere normal to M . Recall
that the Gauss-Kronecker curvature is given by detA, where A(X) = −DXξ
is the shape operator of M relative to ξ. Note that if detAp 6= 0, then Ap is
a linear isomorphism and then A(Yp) 6= 0, so we just analyze this case.

Let U be a neighbourhood of p where the following conditions hold for
each point q in U :

• Yq is not orthogonal to M , i.e. Y T
q 6= 0.
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• A(Y T
q ) 6= 0; here Y T denotes the projection of Y into TM .

It is clear that the above neighbourhood U exists. Let us define the smooth
function F : U → R by F = 〈Y, ξ〉. Therefore, S∂(M,Y ) ∩ U = F−1(0). We
will prove that zero is a regular value of F . If X denotes a vector field tangent
to M and ∇F denotes the gradient of F , then

〈∇F,X〉 = XF = 〈DXY, ξ〉+ 〈Y,DXξ〉
= 〈ϕX, ξ〉 − 〈Y T , A(X)〉 = −〈A(Y T ), X〉.

Note that the above implies that ∇F = −A(Y T ). By our assumptions,
A(Y T ) 6= 0 and therefore ∇F does not vanish in U . In particular, 0 is a
regular value of F and therefore S∂(M,Y ) ∩ U is a hypersurface.

We now express the properties of the shadow boundary in terms of the
second fundamental form of M .

Lemma 3.2. Let M be an immersed hypersurface in N with second fundamen-

tal form α and Y be a closed conformal vector field in N . If p ∈ L = S∂(M,Y )
and A(Yp) 6= 0, then α(Yp, Xp) = 0 for every Xp ∈ TpL.

Proof. By Proposition 3.1, we now that under the given hypotheses L is a
hypersurface of N , at least in a neighbourhood of p. Let ξ be a local unit
normal vector field defined in such a neighbourhood of p and γ a smooth
curve in L such that γ(0) = p and γ′(0) = Xp. Since every point of γ belongs
to L we have 〈Y, ξ〉 = 0; taking the derivative with respect to X we obtain

0 = 〈DXY, ξ〉+ 〈Y,DXξ〉 = 〈ϕX, ξ〉 − 〈Y,A(X)〉 = −〈Y,A(X)〉

as in the proof of Proposition 3.1. Since Yp = Y T
p , we have

0 = −〈Yp, A(Xp)〉 = −〈A(Yp), Xp〉 = −〈α(Yp, Xp), ξ〉;

the above implies that α(Yp, Xp) = 0.

Definition 3.3. Let M be an immersed hypersurface in N . Given a tangent
vector vp ∈ TpM \ {0}, we say that a shadow boundary S∂(M,Y ) is generated
by vp if Y is a closed conformal vector field satisfying the initial condition
Yp = vp.

As an important example, we analyze shadow boundaries of hypersurfaces
in space forms in the next Proposition.

Proposition 3.4. Let N be a space form Qn+1
c . Given an immersed hyper-

surface M of Qn+1
c and any vector vp ∈ TpM \ {0}, there exists a shadow

boundary S∂(M,Y ) generated by vp.
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Proof. Let M and vp ∈ TpM be as in the statement. Define a point p0 ∈ M
by p0 = expp(−vp) when c ≤ 0 and by p0 = expp(−λvp) for a suitable λ > 0
such that λ|vp| < π/

√
c, the diameter of Qn+1

c , if c > 0.
Consider the gradient vector field ∇d of the distance function d(·, p0). As

usual, ∇d is defined only in Qn+1
c \ {p0} (or Qn+1

c \ {p0,−p0} for c > 0). In
this domain, following [1], p. 205, we define the position vector Y in Qn+1

c

relative to p0 by
Yq = Sc(d(q, p0))∇dq,

where

Sc(s) =







s, c = 0;
sin(s

√
c)/

√
c, c > 0;

sinh(s
√
−c)/

√
−c, c < 0.

Y is a closed conformal vector field. In fact, it is well known that the gradient
of a distance function satisfies D∇d∇d = 0, from which we obtain

D∇dY = S′
c∇d, S′

c =
dSc

ds
;

on the other hand, in [1], p. 207, it is proved (see equation (2.2) there) that

DXY = S′
cX

for every vector field X transversal to ∇d. The last two equations imply that
Y is closed conformal.

From the very definition of p0 we have that Yp is a scalar multiple of vp,
so that by multiplying by a suitable constant we obtain a closed conformal
vector field assuming the vaue vp at p.

Proposition 3.5. Let M be an immersed hypersurface in N with second fun-

damental form α. Let p ∈ M be a point where the Gauss-Kronecker curvature

of M is different from zero. Then for every n-dimensional subspace V of TpM
there exists a vector vp ∈ TpM such that the tangent space at p of every shadow

boundary S∂(M,Y ) generated by vp is equal to V .

Proof. Let ξ be a local normal unit vector field of M around p and A its asso-
ciated shape operator. Since detAp 6= 0, A : TpM → TpM is invertible. Thus
we may take vp ∈ TpM such that A(vp) spans V

⊥, the orthogonal complement
of V in TpM .

Let Y be any closed conformal vector field which takes the value vp at p.
By Proposition 3.1 we know that the shadow boundary L := S∂(M,Y ) is an
embedded hypersurface of M around p.

By Lemma 3.2, α(Yp, Xp) = 0 for every Xp ∈ TpL. Therefore,

0 = 〈α(Yp, Xp), ξ〉 = 〈A(Yp), Xp〉 = 〈A(vp), Xp〉.

Since A(vp) spans V
⊥, the above proves that TpL = V .
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Let us recall that a point p in a hypersurface M ⊂ N is an umbilic point
of M if and only if every tangent vector to M at p is a principal direction of
the shape operator A of M at p. As noted in the abstract, we may use shadow
boundaries in order to detect umbilic points in a hypersurface. The following
results show how this can be done.

Definition 3.6. A submanifold L of a hypersurface M ⊂ N is invariant
under the shape operator A of M if for every point p ∈ L, we have that

A(TpL) ⊂ TpL.

Proposition 3.7. Let M be an immersed hypersurface in N . Let p ∈ M
be a point where the Gauss-Kronecker curvature is different from zero, and

such that for every vp ∈ TpM \ {0} there exists a shadow boundary S∂(M,Y )
generated by vp which is invariant under the shape operator of M . Then p is

an umbilic point of M .

Proof. Since the Gauss-Kronecker curvature of M does not vanish at p, the
shape operator A of M relative to a unit normal vector field ξ is invertible.

Fix a vector vp and let Y be as in the hypotheses. We will show that
L = S∂(M,Y ) is orthogonal to Y at p. By Lemma 3.2, α(Yp, Xp) = 0 for
every Xp ∈ TpL. Since A is invertible and L is invariant under A, then
A(TpL) = TpL. So, for every Zp ∈ TpL there exists Xp ∈ TpL such that
Zp = A(Xp). Therefore,

〈Zp, Yp〉 = 〈A(Xp), Yp〉 = 〈α(Yp, Xp), ξ〉 = 0.

Since vp was arbitrarily chosen, by Corollary 4.2 we conclude that p is an
umbilic point of M .

We have the following straightforward application of Proposition 3.7

Corollary 3.8. Given a surface M with nowhere zero Gauss-Kronecker cur-

vature in a three dimensional Riemannian manifold N , if for every p ∈ M
and every vp ∈ TpM \{0} there exists a shadow boundary S∂(M,Y ) generated
by vp which is a line of curvature of M , then M is totally umbilical in N .

4 Totally umbilical hypersurfaces in space forms

In this section we will apply our previous results in order to characterize the
totally umbilical hypersurfaces of the space forms Qn+1

c in terms of shadow
boundaries.

Proposition 4.1. Let M be an immersed hypersurface in Qn+1
c . Let p ∈ M

be any point where the Gauss-Kronecker curvature of M is different from zero.

A vector vp ∈ TpM \ {0} determines a principal direction of M if and only if

there exists a shadow boundary S∂(M,Y ), generated by vp, which is orthogonal

to Y at p.
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Proof. Let us assume first that the shadow boundary S∂(M,Y ) generated by
vp is orthogonal to the closed conformal vector field Y at p. By Lemma 3.2,
〈A(Yp), Xp〉 = 〈α(Yp, Xp), ξ〉 = 0 for every Xp ∈ TpL. This says that A(Yp)
is orthogonal to TpL. But Yp is also orthogonal to TpL; therefore, A(Yp) is
a multiple of Yp; since Yp = vp, this means that vp determines a principal
direction.

Conversely, let us assume that a vector vp determines a principal direction,
so that A(vp) = λvp. Note that since detAp 6= 0, we have λ 6= 0.

By Proposition 3.4, we may construct a closed conformal vector field Y
such that Yp = vp. By Lemma 3.2, we have that

λ〈Yp, Xp〉 = 〈λYp, Xp〉 = 〈A(Yp), Xp〉 = 〈α(Yp, Xp), ξ〉 = 0,

where Xp ∈ TpL. This proves that Yp = vp is orthogonal to the shadow
boundary L generated by vp.

The following result is an immediate consequence of Proposition 4.1.

Corollary 4.2. Let M be an immersed hypersurface in Qn+1
c . Let p ∈ M be

any point where the Gauss-Kronecker curvature of M is non zero. The point

p is an umbilic point of M if and only if for every vp ∈ TpM \{0}, there exists

a shadow boundary S∂(M,Y ), generated by vp, which is orthogonal to Y at p.

In order to prove our main results, we apply Proposition 2 and Remark 2 in
[5], which describe the structure of a complete manifold possessing a globally
defined closed conformal vector field. For completeness we rephrase here the
facts relevant in our setting.

Proposition 4.3 (Montiel). Let Y be a non-trivial closed conformal vector

field defined globally in the space form Qn+1
c . Then Y has at most two zeroes

and

1. If Y has exactly one zero q, then Qn+1
c \ {q} is isometric to a warped

product R+ ×f Sn. If (r, p) ∈ R+ × Sn represent the polar coordinates

of a point, then Y(r,p) = f(r)p. The spheres {r} × Sn give a foliation of

Qn+1
c \ {q}.

2. If Y has two zeroes q,−q, then Qn+1
c \ {q,−q} is isometric to a warped

product (0, π)×fS
n. The spheres {r}×Sn give a foliation of Qn+1

c \{q−q}.

3. If Y has no zeroes, then Qn+1
c is isometric to a warped product R×f Q

n
d ,

where Qn
d is a space form of curvature d. In this case, Y = f(r)∂r and

the slices {r} ×Qn
d foliate Qn+1

c .

We say that a regular curve L in a surface M ⊂ Q3
c contains a principal

direction of M at p ∈ L if the tangent line of L at p is generated by a principal
direction of the shape operator of M in Q3

c .
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Proposition 4.4. Let M be an immersed surface in Q3
c . Then every compact

regular shadow boundary L := S∂(M,Y ) of M relative to a globally defined

closed conformal vector field Y contains at least two principal directions of M
at two different points of L. In particular, if M is a compact surface with

nowhere zero Gaussian curvature then every shadow boundary of M contains

at least two principal directions of M at two different points.

Proof. By Proposition 4.1, we have to prove the existence of two points in L
where L is orthogonal to Y .

Suppose the first case in Proposition 4.3 holds; that is, suppose that Y
has exactly one zero q and that Qn+1

c \ {q} = R+ ×f Sn. Since M is compact
and L is a closed subset of M , there are real numbers r1, r2 such that L is
contained in a slab [r1, r2] × Sn. If [r1, r2] is the smallest interval with this
property, then each sphere {ri} × Sn is tangent to the shadow boundary at
their contact points; since the spheres are orthogonal to Y , the same happens
to the shadow boundary; that is, the shadow boundary is orthogonal to Y at
its contact points with the mentioned spheres.

A completely similar argument holds for the cases where Y has two or no
zeroes.

Finally, we will prove our main result.

Theorem 4.5. Let M be a compact hypersurface with nowhere zero Gauss-

Kronecker curvature in Qn+1
c . If for every p ∈ M and every direction Yp ∈

TpM \ {0} there exists a shadow boundary S∂(M,Y ) generated by Yp which

makes a constant angle with respect to the globally defined closed conformal

vector field Y , then M is totally umbilical.

Proof. By Proposition 3.1, every shadow boundary is a hypersurface of M .
Moreover, since M is compact and each shadow boundary L = S∂(M,Y ) is
closed in M , we have that each L is compact. The idea of the proof is to
use compactness to prove that the constant angle between S∂(M,Y ) and Y
should be π/2, i.e., that every shadow boundary S∂(M,Y ) is orthogonal to
Y .

The argument here is analogous to that of Proposition 4.4. Let p be any
point ofM , Yp ∈ TpM be any non zero tangent vector and Y the corresponding
closed conformal vector field.

By Proposition 4.3, the region where Y has no zeroes has a decomposition
by slices {r} × Qn

d , each one orthogonal to Y . By compactness, the shadow
boundary L is tangent to one of these slices at, say, a point p. Therefore,
the angle between Yp and TpS∂(M,Y ) is π/2. Now we apply Corollary 4.2 to
conclude that the point p is an umbilic point.
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e-mail: oscar.palmas@ciencias.unam.mx

Gabriel Ruiz-Hernández
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