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Abstract

We study shadow boundaries of submanifolds of Riemannian mani-
folds admitting a closed conformal vector field. As applications we give
a method to find a principal direction in a compact hypersurface and a
characterization of totally umbilical hypersurfaces in space forms.

1 Introduction

Given a Riemannian manifold N, an immersed submanifold M and a vector
field Y in N, the notion of the shadow boundary of M is a natural one: It
is the set of points of M such that Y is tangent to M. This concept appears
already in 1990, in an article [2] by J. Choe, under the name of horizon (see
Definition 2.1 there) where he applied it to the study of minimal surfaces.

In [4], M. Ghomi investigated a very close concept, the shadow. Given a
fied unit vector in R3, or equivalently, a parallel vector field v, the shadow of an
orientable surface in R? with respect to v is the set of points of the surface such
that the sign of the angle between v and a given nowhere zero global normal
vector field to the surface does not change. The relation between these con-
cepts is that a shadow is an open set in the complement of a shadow boundary.

In a more general setting, we have to impose some conditions on the am-
bient space N and on the vector field Y in order to obtain some relevant
geometrical information. For example, the paper [6] of the second named
author contains some properties of shadow boundaries of submanifolds with
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respect to a parallel vector field in a Riemannian manifold.

In this work we investigate shadow boundaries of hypersurfaces with re-
spect to a closed conformal vector field in the ambient, a concept which in-
cludes as a particular case that of a parallel vector field. In fact, we show that
space forms are the first examples of manifolds admitting plenty of closed con-
formal vector fields; see Proposition 3.4. Our work is mainly inspired in the
paper [3] about compact shadow boundaries of a hypersurface in Euclidean
space. Here we extend some of the results in [3] to more general spaces, in
particular to any space form.

In general, a shadow boundary is a closed subset of a hypersurface M.
In the case here considered using closed conformal vector fields to construct
shadow boundaries, we give first in Proposition 3.1 a condition on the shape
operator of the immersion M C N for a shadow boundary to be a submanifold
of M. As a particular case of this proposition, we obtain for a hypersurface
with nowhere zero Gauss-Kronecker curvature that every shadow boundary is
a submanifold of M.

In Proposition 4.1 we give a characterization of a principal direction of
a hypersurface M in a space form via shadow boundaries. Namely, given a
closed conformal vector field Y, the vector Y}, € T, M dfines a principal direc-
tion of M if and only if the (regular) shadow boundary SO(M,Y") is orthogonal
to the vector field Y. A useful corollary of this result (see Corollary 3.8) says
that a surface in a three dimensional manifold with the property that every
shadow boundary is a line of curvature must be totally umbilical.

Our main result here is Theorem 4.5 and relates shadow boundaries to the
geometry of a submanifold: Given a compact hypersurface with nowhere zero
Gauss-Kronecker in a space form, if for each point of M and every direction Y,
there exists a corresponding shadow boundary making a constant angle with
respect to Y, then M must be totally umbilical.

2 Preliminaries

In this section we fix our notation. Our ambient space (N"*1, (| }) will be a
Riemannian manifold with connection D.

Definition 2.1. Let M be an immersed submanifold of N, and let Y : N —
TN be a vector field in N. The shadow boundary of M with respect to Y is
the following subset of M:

SOM,Y)={pe M |Y,eT,M}. (1)
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In [2], J. Choe gave the above definition of shadow boundary of Riemannian
submanifolds, calling it horizon. Using the generalized Morse index theorem,
he related this concept with the index of stability of a complete minimal surface
in R3.

In this paper we will work with Riemannian manifolds which admit a closed
conformal vector field Y.

Definition 2.2. We say that Y is a closed conformal vector field if there exist
¢ : N — R smooth such that for every vector field X in N we have

DXY — QOX7
where D is the Levi-Civita connection of N.

For example, if Y is parallel we can take ¢ = 0. In the Euclidean space
R if Y is a radial vector field, the corresponding ¢ is constant equal to
one. This means that in particular, our results hold for constant (i.e., parallel)
and radial vector fields in R**1.

Hereafter Y will denote a closed conformal vector field in N. We will
suppose that Y does not vanish on the submanifold M.

3 Closed conformal vector fields and shadow bound-
aries

In general a shadow boundary is just a closed subset of M. The next result
says that the shadow boundary is a smooth submanifold of M in a region
when the Gauss-Kronecker curvature is different from zero.

Proposition 3.1. Let M be an oriented immersed hypersurface in N andY a
closed conformal vector field in N. Let p be a point in SO(M,Y ") where either
of the following conditions hold:

e The shape operator satisfies A(Yy) # 0; or

o The Gauss-Kronecker curvature of M is not zero at p.

Then there exists a neighbourhood U of p in M such that SO(M,Y)NU is a
hypersurface of M.

Proof. Let & be a unit vector field which is everywhere normal to M. Recall
that the Gauss-Kronecker curvature is given by det A, where A(X) = —Dx¢
is the shape operator of M relative to . Note that if det A, # 0, then A, is
a linear isomorphism and then A(Y},) # 0, so we just analyze this case.

Let U be a neighbourhood of p where the following conditions hold for
each point ¢ in U:

e Y, is not orthogonal to M, i.e. YqT # 0.



264 Oscar Palmas and Gabriel Ruiz-Hernandez

o A(YqT) # 0; here YT denotes the projection of Y into T'M.

It is clear that the above neighbourhood U exists. Let us define the smooth
function F : U — R by F = (Y,&). Therefore, SO(M,Y)NU = F~1(0). We
will prove that zero is a regular value of F'. If X denotes a vector field tangent
to M and VF denotes the gradient of F', then

(VF,X) = XF=(DxY,&)+ (Y, Dxé)
= (pX, &) — (YT, A(X)) = —(A(YT), X).

Note that the above implies that VF = —A(YT). By our assumptions,
A(YT) # 0 and therefore VF does not vanish in U. In particular, 0 is a
regular value of F' and therefore SO(M,Y ) NU is a hypersurface. O

We now express the properties of the shadow boundary in terms of the
second fundamental form of M.

Lemma 3.2. Let M be an immersed hypersurface in N with second fundamen-
tal form o and'Y be a closed conformal vector field in N. Ifp € L = SO(M,Y)
and A(Yy) # 0, then oYy, Xp) = 0 for every X, € T,,L.

Proof. By Proposition 3.1, we now that under the given hypotheses L is a
hypersurface of N, at least in a neighbourhood of p. Let £ be a local unit
normal vector field defined in such a neighbourhood of p and ~ a smooth
curve in L such that v(0) = p and 7/(0) = X,,. Since every point of 7 belongs
to L we have (Y, &) = 0; taking the derivative with respect to X we obtain

0= (DxY,§) + (Y, Dx¢§) = (pX,§) — (Y, A(X)) = —(V, A(X))
as in the proof of Proposition 3.1. Since Y, = Y;DT, we have
0= _<Y}77A(Xp)> = _<A(Y}?)7XP> - _<O‘(Y207Xp)7§>;
the above implies that (Y}, X,) = 0. O

Definition 3.3. Let M be an immersed hypersurface in N. Given a tangent
vector v, € T, M \ {0}, we say that a shadow boundary SO(M,Y') is generated
by v, if Y is a closed conformal vector field satisfying the initial condition
Y, = vp.

As an important example, we analyze shadow boundaries of hypersurfaces
in space forms in the next Proposition.

Proposition 3.4. Let N be a space form Q''. Given an immersed hyper-
surface M of QP! and any vector v, € T,M \ {0}, there exists a shadow
boundary SO(M,Y) generated by v,.
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Proof. Let M and v, € T,M be as in the statement. Define a point pg € M
by po = exp,(—vp) when ¢ < 0 and by py = exp,(—Avy) for a suitable A > 0
such that A|v,| < m/4/c, the diameter of Q2T if ¢ > 0.

Consider the gradient vector field Vd of the distance function d(-,pg). As
usual, Vd is defined only in Q1 \ {po} (or Q¥ 1\ {pg, —po} for ¢ > 0). In
this domain, following [1], p. 205, we define the position vector Y in Q7*!
relative to pg by

Yq - Sc(d(Q7 pO))qua

where
S c=0;

Se(s) = q sin(sv/c)/V/e, c>0;
sinh(sv/—c)/+/—c, ¢<0.
Y is a closed conformal vector field. In fact, it is well known that the gradient
of a distance function satisfies Dy4Vd = 0, from which we obtain

DygY = S/vd, S.= a5 <.
ds

on the other hand, in [1], p. 207, it is proved (see equation (2.2) there) that

DyxY = S'X

for every vector field X transversal to Vd. The last two equations imply that
Y is closed conformal.

From the very definition of py we have that Y}, is a scalar multiple of v,
so that by multiplying by a suitable constant we obtain a closed conformal
vector field assuming the vaue v, at p. ]

Proposition 3.5. Let M be an immersed hypersurface in N with second fun-
damental form «. Let p € M be a point where the Gauss-Kronecker curvature
of M s different from zero. Then for every n-dimensional subspace V' of T,,M
there ewists a vector v, € T, M such that the tangent space at p of every shadow
boundary SO(M,Y') generated by vy, is equal to V.

Proof. Let £ be a local normal unit vector field of M around p and A its asso-
ciated shape operator. Since det A, # 0, A : T,M — T,,M is invertible. Thus
we may take v, € T, M such that A(v,) spans V+, the orthogonal complement
of Vin T,M.

Let Y be any closed conformal vector field which takes the value v, at p.
By Proposition 3.1 we know that the shadow boundary L := SO(M,Y) is an
embedded hypersurface of M around p.

By Lemma 3.2, a(Y}, X)) = 0 for every X,, € T),L. Therefore,

0= <O‘(Y}77XP)7§> = <A(Y}7)7XP> = <A(vp)7Xp>'

Since A(vp) spans VL, the above proves that T,L=1V. O



266 Oscar Palmas and Gabriel Ruiz-Hernandez

Let us recall that a point p in a hypersurface M C N is an umbilic point
of M if and only if every tangent vector to M at p is a principal direction of
the shape operator A of M at p. As noted in the abstract, we may use shadow
boundaries in order to detect umbilic points in a hypersurface. The following
results show how this can be done.

Definition 3.6. A submanifold L of a hypersurface M C N is invariant

under the shape operator A of M if for every point p € L, we have that
A(T,L) C T, L.

Proposition 3.7. Let M be an immersed hypersurface in N. Let p € M
be a point where the Gauss-Kronecker curvature is different from zero, and
such that for every v, € T,M \ {0} there ezxists a shadow boundary SO(M,Y")
generated by v, which is invariant under the shape operator of M. Then p is
an umbilic point of M.

Proof. Since the Gauss-Kronecker curvature of M does not vanish at p, the
shape operator A of M relative to a unit normal vector field £ is invertible.

Fix a vector v, and let Y be as in the hypotheses. We will show that
L = SO(M,Y) is orthogonal to Y at p. By Lemma 3.2, a(Y,, X,) = 0 for
every X, € T,L. Since A is invertible and L is invariant under A, then
A(T,L) = T,L. So, for every Z, € T,L there exists X, € T,L such that
Zy = A(Xp). Therefore,

(Zp, Yp) = (A(Xp), Vp) = ((¥p, Xp), ) = 0.

Since v, was arbitrarily chosen, by Corollary 4.2 we conclude that p is an
umbilic point of M. O

We have the following straightforward application of Proposition 3.7

Corollary 3.8. Given a surface M with nowhere zero Gauss-Kronecker cur-
vature in a three dimensional Riemannian manifold N, if for every p € M
and every v, € T,M \ {0} there exists a shadow boundary SO(M,Y") generated
by v, which is a line of curvature of M, then M is totally umbilical in N.

4 Totally umbilical hypersurfaces in space forms

In this section we will apply our previous results in order to characterize the
totally umbilical hypersurfaces of the space forms Q?*! in terms of shadow
boundaries.

Proposition 4.1. Let M be an immersed hypersurface in Q™. Let p € M
be any point where the Gauss-Kronecker curvature of M is different from zero.
A wvector v, € T,M \ {0} determines a principal direction of M if and only if
there exists a shadow boundary SO(M,Y"), generated by v,, which is orthogonal
toY atp.
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Proof. Let us assume first that the shadow boundary SO(M,Y") generated by
vy, is orthogonal to the closed conformal vector field Yat p. By Lemma 3.2,
(A(Yy), Xp) = (a(Yp, Xp), &) = 0 for every X, € T,L. This says that A(Y))
is orthogonal to 7,L. But Y} is also orthogonal to T,,L; therefore, A(Y}) is
a multiple of Y,; since Y, = v,, this means that v, determines a principal
direction.

Conversely, let us assume that a vector v, determines a principal direction,
so that A(v,) = Avp. Note that since det A, # 0, we have \ # 0.

By Proposition 3.4, we may construct a closed conformal vector field Y
such that Y, = v,. By Lemma 3.2, we have that

MYy, Xp) = (AYp, Xp) = (A(Yp), Xp) = (a(Yp, Xp), &) =0,

where X, € T,L. This proves that Y, = v, is orthogonal to the shadow
boundary L generated by wv,,. ]

The following result is an immediate consequence of Proposition 4.1.

Corollary 4.2. Let M be an immersed hypersurface in QL. Let p € M be
any point where the Gauss-Kronecker curvature of M is non zero. The point
p is an umbilic point of M if and only if for every v, € T,M \ {0}, there exists
a shadow boundary SO(M,Y), generated by v,, which is orthogonal to'Y at p.

In order to prove our main results, we apply Proposition 2 and Remark 2 in
[5], which describe the structure of a complete manifold possessing a globally
defined closed conformal vector field. For completeness we rephrase here the
facts relevant in our setting.

Proposition 4.3 (Montiel). Let Y be a non-trivial closed conformal vector
field defined globally in the space form QL. Then'Y has at most two zeroes
and

1. If Y has exactly one zero q, then Q1 \ {q} is isometric to a warped
product RT x ¢ S™. If (r,p) € RT x S" represent the polar coordinates
of a point, then Y,y = f(r)p. The spheres {r} x S" give a foliation of
Qe \ {a}-

2. If Y has two zeroes q,—q, then QT \ {q, —q} is isometric to a warped
product (0, )X ¢S™. The spheres {r}xS" give a foliation of Q" \{q—q}.

3. IfY has no zeroes, then Q"+ is isometric to a warped product R x ¢ Q,

where QY is a space form of curvature d. In this case, Y = f(r)0, and
the slices {r} x Q" foliate Q"*1.

We say that a regular curve L in a surface M C Q2 contains a principal
direction of M at p € L if the tangent line of L at p is generated by a principal
direction of the shape operator of M in Q3.
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Proposition 4.4. Let M be an immersed surface in Q2. Then every compact
reqular shadow boundary L := SO(M,Y") of M relative to a globally defined
closed conformal vector field Y contains at least two principal directions of M
at two different points of L. In particular, if M is a compact surface with
nowhere zero Gaussian curvature then every shadow boundary of M contains
at least two principal directions of M at two different points.

Proof. By Proposition 4.1, we have to prove the existence of two points in L
where L is orthogonal to Y.

Suppose the first case in Proposition 4.3 holds; that is, suppose that Y
has exactly one zero ¢ and that Q7" \ {g} = R x;S". Since M is compact
and L is a closed subset of M, there are real numbers r1, 7y such that L is
contained in a slab [ry, 79| x S™. If [r,r2] is the smallest interval with this
property, then each sphere {r;} x S is tangent to the shadow boundary at
their contact points; since the spheres are orthogonal to Y, the same happens
to the shadow boundary; that is, the shadow boundary is orthogonal to Y at
its contact points with the mentioned spheres.

A completely similar argument holds for the cases where Y has two or no
Zeroes. L]

Finally, we will prove our main result.

Theorem 4.5. Let M be a compact hypersurface with nowhere zero Gauss-
Kronecker curvature in Q. If for every p € M and every direction Y, €
T,M \ {0} there exists a shadow boundary SO(M,Y') generated by Y, which
makes a constant angle with respect to the globally defined closed conformal
vector field Y, then M 1is totally umbilical.

Proof. By Proposition 3.1, every shadow boundary is a hypersurface of M.
Moreover, since M is compact and each shadow boundary L = SO(M,Y") is
closed in M, we have that each L is compact. The idea of the proof is to
use compactness to prove that the constant angle between SO(M,Y’) and Y
should be 7/2, i.e., that every shadow boundary SO(M,Y) is orthogonal to
Y.

The argument here is analogous to that of Proposition 4.4. Let p be any
point of M, Y, € T, M be any non zero tangent vector and Y the corresponding
closed conformal vector field.

By Proposition 4.3, the region where Y has no zeroes has a decomposition
by slices {r} x QJ, each one orthogonal to Y. By compactness, the shadow
boundary L is tangent to one of these slices at, say, a point p. Therefore,
the angle between Y, and 7,S0(M,Y") is m/2. Now we apply Corollary 4.2 to
conclude that the point p is an umbilic point. L]
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