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CLASSIFICATION OF CONSTANT ANGLE HYPERSURFACES IN
WARPED PRODUCTS VIA EIKONAL FUNCTIONS

EUGENIO GARNICA, OSCAR PALMAS, AND GABRIEL RUIZ-HERNANDEZ

ABSTRACT. Given a warped product of the real line with a Riemannian manifold
of arbitrary dimension, we classify the hypersurfaces whose tangent spaces make
a constant angle with the vector field tangent to the real direction. We show that
this is a natural setting in which to extend previous results in this direction made
by several authors. Moreover, when the constant angle hypersurface is a graph
over the Riemannian manifold, we show that the function involved satisfies a
generalized eikonal equation, which we solve via a geometric method. In the
final part of this paper we prove that minimal constant angle hypersurfaces are
cylinders over minimal submanifolds.

Introduction

Several classical, well-known geometric objects are defined in terms of making
a constant angle with a given, distinguished direction. Firstly, classical helices are
curves making a constant angle with a fixed direction. A second example is the
logarithmic spiral, the spira mirabilis studied by Jacob Bernoulli, which makes
a constant angle with the radial direction. In a third famous example which had
applications to navigation, the loxodromes or rhumb lines are those curves in the
sphere making a constant angle with the sphere meridians.

Recently, several authors had established and investigated some generaliza-
tions of the above situation. In 2007, F. Dillen et al. characterized those surfaces
M in S? x R whose normal vector ¢ makes a constant angle 0 with the direction
tangent to R (see [7]). Two years later, F. Dillen and M. I. Munteanu gave in [8] a
similar characterization theorem for constant angle surfaces in the product H? xR,
using the hyperboloid model for the hyperbolic plane H2. In the final part of the
paper they classified the constant angle surfaces with constant mean curvature
in this Riemannian product.

Another nice paper in this direction is [13], where M. I. Munteanu made a
review of some applications of constant angle surfaces and gave a complete clas-
sification of the so-called constant slope surfaces in R3, that is, those surfaces
making a constant angle with the radial position vector field. He showed that a
surface S c R? is a constant slope surface iff either it is an Euclidean 2-sphere
centered at the origin or it can be parameterized by

r(u,v) = usinf(coséf (V) +siné f(v) x f'(v)),
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where 0 is a constant different from 0, ¢ = &(u) = cotflogu and f is a unit speed
curve on the Euclidean sphere $2.

It is also worth mentioning the recent paper [10], where Dillen, Munteanu,
Van der Veken and Vrancken classified the constant angle surfaces in the warped
product I x, R2. We will discuss the relation of this and other works with ours in
Section 3. This class of surfaces or curves making a constant angle with respect
to some direction have been also investigated in Minkowski space, see [1] and [12]
for details.

Using another approach, A. Di Scala and the third named author studied in [4]
the helix submanifolds of Euclidean spaces, i. e., submanifolds making a constant
angle with a constant direction. They builded constant angle hypersurfaces of
R**1 as follows: Given an orientable hypersurface L of R” with a unit normal
vector field 7, let 7 : L x R — R**1 be defined by

r(x,s)=x+s ((sin@)n(x) + (cos6)d),

where 0 is constant and d =(0,...,0,1). Then f parameterize a hypersurface mak-
ing a constant angle 0 with the fixed direction determined by d. Moreover, they
showed that, except for some trivial cases, any helix hypersurface admits locally
such a parametrization. They also showed that these non-trivial constant angle
submanifolds are given locally as graphs of functions whose gradient has constant
length (that is, solutions of the so-called eikonal equation). In [5], they showed
further that any function satisfying the eikonal equation may be characterized as
a distance function relative to an embedded hypersurface in the ambient space.

All of the above results suggest the existence of a general framework in which
it is natural to consider the study of constant angle submanifolds. As it will turn
out along this paper, a natural choice for that purpose is an ambient space M
given as a warped product of the form I x, P", where I is an open interval and
p:I — R" is a smooth positive function. We consider those submanifolds making
a constant angle with the vector field d; tangent to the R-direction. Of course, the
case of the Euclidean ambient space is obtained by considering P"” = R" and the
constant warping function p = 1.

The plan of this paper is the following. Section 1 gives the basic geometric
properties of constant angle hypersurfaces in a warped product, showing that
they have a rich extrinsic and intrinsic geometry. In Theorem (1.5) we prove
that if the projection of 0; to the tangent space of a constant angle hypersurface
does not vanish, it determines a principal direction on the hypersurface. In the
terminology of the recent works [6], [9] and [14], the hypersurface has a canonical
principal direction relative to the distinguished vector field d;. Also, we prove
that the integral lines of this tangential component are lines of curvature and
geodesics of the hypersurface.

In Section 2 we state our main result giving a complete characterization of
constant angle hypersurfaces in I x, P" (see Theorem (2.3)):

Let M’Hl be the warped product I x,P". A connected hypersurface M of Misa
constant angle hypersurface in M if and only if it is an open subset of either
o A cylinder of the form I x L"~!, where L is a hypersurface of P; or
o The graph of a function f : P — R satisfying the generalized eikonal equation

0.1) IVfl=C-(pof),
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where C is a constant, p stands for the warping function and the graph of f
is defined as the set of points (f(p), p) with p € P.

We also give a geometric method to build the solutions of the generalized eikon-
al equation, by generalizing the technique given in [5] for the case of the classical
eikonal equation. Our result in the context of constant angle hypersurfaces is the
following (see Corollary (2.8)):

Let M’Hl be the warped product I x,P". A connected hypersurface in M is
a constant angle hypersurface with 6 € (0,71/2) if and only if it is the graph of a
function f :P — R of the form f = hod, where d measures the distance to a fixed
orientable hypersurface L <P and h satisfies

do
so Cp(0)

hs) =

with C =tan6.

In Section 3 we show the relation between the parametrizations of constant
angle surfaces obtained by the authors already mentioned in this Introduction
and our language. Note that our setting includes all codimension 1 cases, and in
particular, the case of surfaces in every 3-dimensional warped product of the form
Ix, P2.

Finally, in Section 4 we prove that minimal constant angle hypersurfaces are
cylinders over a minimal submanifold of codimension two. We deduce this result
from the following nice property:

Let f: Q cR® — R be a smooth function with connected open domain Q. If f is
harmonic and eikonal then f is linear in Q.

1. A canonical principal direction
Throughout this paper, we will use the following notations:

. M’Hl will denote a warped product of the form I x, P", where I is an open
interval, P is a Riemannian manifold and p : I — R™.

e Vis the Riemannian connection on M relative to the warped product metric.

« 0, will denote the unit vector field tangent to the R-direction in M.

o M will be a connected orientable hypersurface in M.

e V will denote the induced Riemannian connection on M.

e ¢ € X(M) will be a unit vector field, everywhere normal to M.

¢ 0 will denote the function on M measuring the angle between d; and ¢.

Definition (1.1). We say that M is a constant angle hypersurface iff the angle
function 6 is constant along M.

Remark (1.2). Given a constant angle hypersurface, we may choose the orien-
tation of M so that 6 € [0,71/2], as we will do.

Our aim here is to classify all constant angle hypersurfaces M of the warped
product I x, P". A trivial case occurs when 6 = 0. In the language of the warped
product structure, { = d; and then a connected constant angle hypersurface is
contained in a slice {¢¢} x P. So, we suppose in this section that 0 € (0, 7/2].
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Let us fix some additional notation. As usual, we have the Gauss and Wein-
garten equations for hypersurfaces:

VyZ=VyZ+II(Y,Z), Vyé=-A;Y,

where Y ,Z € X(M), 11 is the second fundamental form of M and A is the shape
operator associated to ¢. Recall also that IT and A are related by the formula

II(Y,Z),¢) =(A:Y ,Z).
Let 02— be the component of d; tangent to M, that is,
0f =0, (01,0)¢,
Note that 0 € (0,7/2] implies 02— # 0 and we may define

9,
(1.3) T=—.
16/ |
Hence we may write
(1.4) 0¢ = (sinB)T + (cosO)¢.

Now we are ready to give some basic geometric properties of the constant angle
hypersurfaces.

THEOREM (1.5). Let M be a constant angle hypersurface of MMI such that
0 €(0,7/2]. Then the integral lines of the vector field T defined in (1.3) are lines of
curvature of M ; in fact,

p/
AT =-cos0—T.
P

In other words, T is a principal direction of M. Moreover, these lines are
geodesics of M, that is, V7T = 0. .

Additionally, the integral lines of T are geodesics of M iff either 0; is parallel or
0 = n/2.

Proof. Suppose first that 0 € (0,7/2), which implies cosf # 0. Differentiating (1.4)
with respect to a vector field W € X(M), we obtain

(1.6) Vwo; = (sin0)Vw T + (cos O)Vwé.

Suppose additionally that (W,T) = 0 or, equivalently, (W,d;) = 0. To calculate
Vw0, we may suppose that W is given as a lifting of a vector field on P and use
standard derivation formulas in warped products (see [15], p. 296, Prop. 35,
for example) to obtain that Vyyd; = (p'/o)W. Taking the components tangent and
normal to M in the above formula and using that cosf # 0, we have

!
AW = ——L W+ (tano)Vy T,
pcos@

and II(W,T) =0, which implies that
(AT, W) =(AW,T) =II(W,T),5)=0

for every W € X(M) such that (W,T) = 0. In turn, this fact implies that A;T is a
scalar multiple of T, i.e., T is a principal direction of M.
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We return to the general expression (1.6) and take W = T'. In order to use the
derivation formulas for warped products again, we write

T = (sin0)0; + (cosO)[(cosO)T — (sinB)¢],
and note that the vector field (cos0)T — (sin8)¢ is orthogonal to d;. Hence,
Vrd; = (sinf)Vs,0; +(cos0)V(coso)T—(sin0)é10t

/

(cos@)% [(cosO)T — (sinO)¢T;

so that the tangent and normal components of (1.6) are
!/
cos202-T = (sinO)V T - (cosO) AT
0

and ,
—sin6 COSB%E = (sin®)II(T, T).

From the first of these expressions, since A;T is a scalar multiple of T' (and
sinf # 0), we deduce that the same happens with V7 T'; but as T is a unit vector
field, we have V7T =0; i.e., the integral lines of T' are geodesics in M. Also,

!

AT = —cosHP—T,
P

meaning that T is a principal direction. In the case of the second fundamental
form, we have

o'
I(T, 7= —cosH;g‘.

Since we are analyzing the case cos # 0, II(T,T) =0 if and only if p’ = 0; i.e.,
p is constant. In this case, Vwo,; =0 for every vector field W € X(M). That is, the
integral lines of T' are geodesics of M if and only if 9, is parallel.

The analysis in the case 0 = /2 is similar, but easier, since in this case equation
(1.4) reduces to T = 3;. We have that VT = %tat =0 and then the integral lines of
T are geodesics of M, thus they also are geodesics of M. If W € X(M) is orthogonal

to T' we have on one hand )

VwT =Vwo, = 2w,
0

and on the other hand, ng =VwT +II(W,T), which implies that II(W,T) = 0.
As in the previous case, this in turn implies that A;T is a scalar multiple of T' and
T is a principal direction. In fact, since VpT =VpT +II(T,T) =0, we have

(AT, Ty=IT,T),¢) =0,
and then AT =0 and T is a principal direction. O

Theorem 1.5 says that the constant angle hypersurfaces with 0 € (0,7/2] are
examples of hypersurfaces with a canonical principal direction, which means that
there exists a vector field in the ambient such that the component of this vector
field tangent to the surface is a principal direction for the shape operator of the
surface. This notion has been studied recently by several authors; see, for example
[6], [9] and [14], where the authors classify surfaces with a canonical principal
direction in H? x R, $% x R and R? x R, respectively.
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2. Construction and characterization of constant angle hypersurfaces

In this section we prove our main results, classifying the constant angle hyper-
surfaces in any warped product of the form I x, P". First we consider the case of
0 =m/2:

PROPOSITION (2.1). Let M be a connected hypersurface of I x,P". M is a con-
stant angle hypersurface with 0 = n/2 if and only if M is an open subset of a cylin-
der I x L™, where L is a (n — 1)-dimensional hypersurface of P.

Proof. Suppose M is a constant angle hypersurface with 6 = /2. By transversal-
ity, the intersection of M with a fixed slice {¢o} x P" is (isometric to) a hypersurface
L of P". Since 0; is everywhere tangent to M in this case, we reconstruct M by
departing from this intersection and following the flow of d;, obtaining the afore-
mentioned cylinder. The converse is clear. O

In view of this result, we may suppose from now on that 6 € [0,7/2). Using
transversality, we may suppose additionally that M is given locally as a graph
of a real function f : P — I. We will prove that such a graph is a constant angle
hypersurface if and only if f satisfies a condition on the norm of its gradient (see
equation (0.1)). In the following definition we fix the classical terminology for this
kind of functions.

Definition (2.2). Let P" be a Riemannian manifold and f : P — I a differentiable
function, where I is a real interval. We say that f is eikonal if it is a solution of
the eikonal equation

IVil=C,

where Vf denotes the gradient of f and C is a given constant. More generally, let
p: I — R* be a differentiable positive function. We say that f is a transnormal
function if it satisfies the generalized eikonal equation (0.1), namely,

IVFI=C-(pof).

The concept of transnormal function is related to the class of submanifolds
called isoparametric submanifolds which are level hypersurfaces of isoparametric
functions. According to [18], a transnormal function is a smooth function f satis-
fiying the equation [Vf|? = bof, where b is a smooth function which can be zero at
some points. In our case b = Cp > 0. An isoparametric function is a transnormal
function that also satisfies the condition Af =a o f, where a is a smooth function.
It is well known that Cartan investigated such functions on space forms; see [2]
and [18] for more details. An interesting result in [18], is that a transnormal
function in $” or in R” is isoparametric.

The next theorem is our main result, giving the precise relation between the
transnormal functions and the constant angle hypersurfaces.

THEOREM (2.3). Let M’Hl be the warped product I x,P*. A connected hyper-

surface M of M is a constant angle hypersurface in M if and only if it is an open
subset of either

o A cylinder of the form I x L1, where L is a hypersurface of P; or
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o The graph of a transnormal function f :P — I satisfying equation (0.1) for
the warping function p. Here the graph of f is defined as the set of points
(f(p),p) with peP.

Proof. Let M be a constant angle hypersurface in M. By Proposition (2.1), we
may suppose that 0 € [0,7/2) and that M is a graph of a function f. Let us denote
by Vf the lift to M of the gradient of f. Then it is easy to see that a vector field ¢
everywhere normal to the graph of f may be chosen as
E=(pof)?0;—Vf.
Using the definition of the warped product metric and the fact that ; and Vf
are orthogonal, we have that the square of the norm of ¢ is given by
& = + (o PIVFIP=(po fP(po > +IVfIP),

and consequently the angle 0 between ¢ and 9; satisfies

cosl = <i,6t> = L
H Vpo FE+IVF2
Note that cos6 # 0 for 0 € [0,7/2). Hence we may express |[Vf| in terms of po f as
IVfl=(tanB)pof),

which means that f is transnormal with C = tan6.
Conversely, if we consider the graph of a transnormal function satisfying equa-
tion (0.1), the angle 6 between its normal ¢ and 0; is such that

1
(2.4) cosH=<i,0t>= pef = ;
<] V(o f2+IVFI2  V1+C2
meaning that the graph of f is a constant angle hypersurface. O

In short, Theorem 2.3 proves that every constant angle hypersurface is locally
the graph of a function satisfying a partial differential equation on a Riemann-
ian manifold P”, the generalized eikonal equation (0.1). In the final part of this
section we will solve this equation explicitly by a geometric method using the
distance function to an arbitrary hypersurface in P".

As a first step, in our next Proposition we prove the (local) existence of solutions
using a constructive method.

PROPOSITION (2.5). Let P" be a Riemannian manifold and p : I — R" a dif
ferentiable positive function. Fix an orientable hypersurface L c P and a tubular
neighborhood L. of L such that the distance function d to L is well-defined in L.
and is differentiable in L\ L. Also, define a real valued and invertible function
h:I—>R* by

s do
so Cp(0)’
where C #0. Then f =hod is transnormal in L\ L.

(2.6) rl(s)=

Proof. It is well-known that |Vd|=1in L.\ L; then,
IVFI IV(hod)|=(h'od)IVd|=h'od

1
= G hGeq O Pehed=Crlpol),
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which proves the claim. O

Now we analyze the (local) uniqueness of solutions of the generalized eikonal
equation. We will use the results proved by Di Scala and the third named au-
thor in [5], where they studied the local uniqueness of the solutions of an eikonal
equation.

PROPOSITION (2.7). Let f :P — I satisfy IVf|=C-(pof) for C #0. Then f is
given locally as in Proposition (2.5).

Proof. Letd =h™1of, where h™! is defined in equation (2.6). Let us calculate the
gradient of d in P :
— -1 _ -1y _
Vd=V(h "o f)=((h"") o fIVf C-(pof)vf'

Therefore, [Vd| = 1. Theorem (5.3) in [5] implies then that for every point p € P
there exists a neighborhood U of p in P and a hypersurface L < P such that d|y
measures the distance from a point in U to the hypersurface L. This proves that
f = hod has the form given in Proposition (2.5). O

We are ready to translate the above results to our constant angle hypersurfaces
setting.

COROLLARY (2.8). Let Mnﬂ be the warped product I x,P". A connected hyper-
surface in M is a constant angle hypersurface with 0 € (0,7/2) if and only if it is the
graph of a function [ :P — R of the form f = hod, where d measures the distance
to a fixed orientable hypersurface L cP and h satisfies
do

hl(s) = )
(s) so Cp(0)

with C =tan0.

3. Applications and Examples

In this section we will construct some examples of constant angle hypersurfaces
and will show the relation of our construction with those made in the papers
already mentioned in the Introduction.

Example (3.1). Let us consider the upper-half space model for the hyperbolic
space H"*1, which can be expressed as the warped product (0,00) x o R*, where
p(t) = 1/t. Then, taking s =1,

s do 1 (¢ $2-1
:h_l = :—f d = —.
rEh®= | oo - ch 79 3¢

Hence, s = h(r) = V2Cr + 1. The hypersurface we consider is L = R"~1, identi-
fied as usual with the points (x1,...,x,-1,0) so that the (oriented) distance func-
tion to L is x,, the n-th coordinate function on R”.

Therefore, the explicit expression of the function f =hod is

f(x1,...,x3)=hod(x1,...,x,) = h(x,) = V2Cx, + 1.
We calculate the gradient of f as

C

— 4,
V2Cx, +1

Vf(xl,--',xn) =
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where 0, = 0x,. Note that

CZ
\Y 2o~ —(? 2(xy,... .
| f(xlr 7xn)| Zan+1 (pof) (xl’ 7xn)

Application (3.2). In[13], Munteanu studied the surfaces in three-dimensional
Euclidean space whose normal vector at a point makes a constant angle with the
position vector of that point, showing (Theorem 1 in [13]) that a constant angle
surface is an open part of the Euclidean 2-sphere or it can be parameterized by

(3.3)  r(u,v)=u{sinO[cos(cotOInu)a(v) + sin(cotfInu)- a(v) x a'(v)1},

where 6 #0 and « is a unit speed curve a: I — S2.
To translate Munteanu’s analysis to our context, note that the Euclidean 3-
space minus the origin is isometric to the warped product

(0,00) x, S(sin0), p(t) = —;
sinf
here $2(sinf) denotes a 2-dimensional sphere with radius sinf. Of course, the
natural isometry of this warped product with R3\ {0} is given explicitly by (¢, p) —
tp.
To be able to compare Munteanu’s result with our Corollary (2.8), we note that
the function A given by equation (2.6) is given by

§ do _ sin0
1 Cp(o) C

ris) = ns.

Also, we will obtain an expression for the distance function in $2 to the curve
a that appears in (3.3). Note that the expression in braces in (3.3) gives a point
¢(u,v) in $%(sin@) and that its distance d = d(¢(u,v)) to a(v) is precisely the prod-
uct of the radius and the angle between the two vectors; i.e.,

d(p(u,v)) =sinf-cotf-Inu = cosf -Inu;
recalling that C may be seen as tanf, we have
d(p(u,v) = k™' (w),
which gives
flp(u,v)) =hod(p(u,v))=u.

This fact means that a constant angle surface in (0,00) x, S$2(sin@) is given by

the graph (f(¢(u,v)),p(u,v)) of f, i. e., by
(u,¢(u,v)) = (u,sinBlcos(cot O Inu) a(v) + sin(cotO1lnu) - a(v) x a'(v)]);

but this expression corresponds precisely to equation (3.3) via the aforementioned

isometry of (0,00) x, S$2(sinf) with the Euclidean space. Thus, we recover Mun-
teanu’s result.

Application (3.4). In our last comparison we consider the work [10], where
Dillen et al. analyzed the hypersurfaces in the warped product I x, R2 making a
constant angle with the vector field d;. Theorem 1 in [10] states that an isometric
immersion 7 : M2 — M =1 x,R? defines a surface with constant angle 0 € [0, 7/2]
if and only if, up to rigid motions of M, one of the following holds locally:
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1. There exist parameters (u,v) of M, with respect to which the immersion r is

given by
usinf do v
3.5) r(u,v)= (usin@,cotﬁ (f —)cosv—f glo)sinodo,
p(o)
usinf v
cotd (f ﬂ)sinv+f g(a)cosada)
p(o)

for some smooth function g.
2. r(M) is an open part of the cylinder x — G(¢) = 0 for the real function G given
by

t
G(t) = cotﬁf do
p(o)

(Here (x,y) are the standard coordinates in R?.)
3. r(M) is an open part of the surface ¢ = ¢ for some real number ¢¢, and 6 = 0.

We will discuss items (1) and (2) of this theorem. In relation with item (2)
and in analogy with our previous discussion of Munteanu’s work, we see that the
function G may be written in our terminology as

do t do
— = =h7l(2).
p(o) Cp(o) ®

To obtain the cylinder x — G(¢) = 0, we proceed as follows: We build a constant
angle curve in the (¢,x)-plane, that is, a curve making a constant angle with the
vertical vector field ;. Note that this plane is a warped product I x, R.

By Corollary 2.8, we may build this curve by first taking a codimension one
manifold in R, i.e., fixing a point in the real axis, which we may take as the origin.
Next, we calculate the distance function d in R to this point, which obviously
gives d(x) = x. Hence, the graph of f =hod = h =Gl is the constant angle curve
we were looking for. By taking the cylinder over this curve in the 3-dimensional
space, we obtain the constant angle surface given in item (2).

To analyze item (1), we define the following curve a(v) in the (x, y)-plane:

t
G@) = cotef

av) = (—fvg(a)sinada,fvg(o)cosada);

which may be obtained from the second and third coordinates in (3.5) making
u=0.
Note that a'(v) = g(v)(—sinv,cosv), so that (cosv,sinv) is a unit vector field every-
where normal to this curve. An easy calculation shows that the second and third
coordinates in (3.5) give a parametrization ¢(u,v) of a neighborhood of @ by Fermi
coordinates; in fact, the distance of a point in this neighborhood to the curve a is
precisely
usinf do

p(a))’
which is equal to A 1(zsin) in our terminology. From this we have that the
eikonal function f given in Corollary 2.8 is

f(p(u,v)) =hod(p(u,v)) =usind;

d(p(u,v)) =coth (f

that is, equation (3.5) is the expression of the graph of f in I x,, R2.
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Remark (3.6). Note that instead of usinf we may use a function ¥(u) in the
upper limit of the integrals appearing in (3.5) to obtain a point ¢(u,v) in the plane
whose distance to the curve a is

y(u)
d(u,v)zcota(f do )

(o)
so that f(¢(u,v)) =yp(u).

4. Minimal constant angle hypersurfaces

Let us recall that a function in Euclidean space is called eikonal if its gradient
has constant length.

LEMMA (4.1). Let f : U cR"™ — R be a smooth function defined on the connected
open subset U. If f is a non constant harmonic and eikonal function then f is
linear.

Proof. The idea is to prove that f is locally linear and then to use that U is con-
nected. So in our argument we can take smaller open neighbourhoods if it were
necessary. Without loss of generality we can assume that |[Vf|2 = 1. Then the level
hypersurfaces of f are equidistant embedded hypersurfaces in R” because the dis-
tance between two level hypersurfaces is measured along the integral curves of
the vector field Vf, which has constant length. Since f is harmonic and eikonal
every level hypersurface f1(¢) of f is minimal in R” because the mean curvature
vector field H of the level hypersurfaces is given by

1 1
—WAIH' _IVf|2v|vf|’

see [17] for details. As we said before, in our case we can conclude that H =0, i.e.
every level hypersurface is minimal. So, {f ‘1(t)}t€f(U) is a family of equidistant
minimal hypersurfaces of R*. We will prove that this is possible if and only if
every level hypersurface in the family is a hyperplane.

Let A1, g, ... A,_1 be the principal curvatures of f1(¢). It is known that for every
t € F(U) close to to, the principal curvatures of f~1(¢) are given by

A A2 An-1
1-(t—t)A’ 1-(t—to)Ae” " 1-(t—t)An-1
This is a consequence of the relation between the shape operator A of f~1(¢¢) and
the shape operator A; of f~1(t): A, =(I —tA) 1A. See [3] page 38.
Since every level hypersurface £ ~1(¢) of f is minimal, the mean curvature of £ ~1(¢)
is zero:

(4.2) H=

M A2 An-1 B
+ Foob—————— =
1-(—tg)h1 1-(t—tp)Ae 1-(—to)An-1
Taking the derivative with respect to ¢ and evaluating in ¢ = ¢ty we obtain that
/1% +/1§ +...+ )L?L_l =0, which implies that A; = A3 =... = A,_1 = 0. Therefore f~1(¢)
is totally geodesic, i.e. it is part of a hyperplane. This proves that f is linear. [

Remark (4.3). As noted by the referee, Lemma 4.1 is a consequence of classi-
cal results obtained by Levi-Civita and Segre (see [11] and [16]) in the context
of isoparametric hypersurfaces; we included the above proof for the sake of com-
pleteness. The referee also pointed out to us that we may prove the lemma in a
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shorter way using the well-known Bochner’s formula, valid for any smooth func-
tion f over a Riemannian manifold:

(4.4) %A|Vf|2 = (Vf,VAf)-Ric(Vf,Vf)—|Hessf|%.

In order to prove the lemma, note that R” is Ricci flat and f is harmonic and
eikonal; hence Bochner’s formula implies that Hessf = 0. So, the second order
partial derivatives of f are zero. This proves that f is linear.

The next Corollary (4.5), improves Theorem (2.8) in [4] which says that a con-
stant angle hypersurface M in Euclidean space is minimal if and only if every slice
of M is also minimal. Our Corollary here gives a complete, explicit classification
of these hypersurfaces.

COROLLARY (4.5). Let M be a connected constant angle hypersurface in R with
respect to a constant direction X. If M is minimal then either M is part of a
cylinder, over a minimal hypersurface in R or M is part of a hyperplane.

Proof. We can assume that X is a unit vector field. If X is tangent to M, then it
is clear that M is part of a cylinder over a hypersurface L in a R*~! orthogonal to
X. Moreover, L should be minimal because M is minimal.

If X is transversal to M then M if the graph of a smooth function f, the height
function in direction X. Since M is minimal, every slice of M with hyperplanes
orthogonal to X is minimal in the Euclidean ambient, which follows from Theorem
2.8 of [4]. Equivalently, every level hypersurface of f is minimal. Under the
hypothesis that f is eikonal and using relation (4.2), the latter condition holds if
and only if f is a harmonic function. So, f is an eikonal and harmonic function.
By Lemma (4.1), f is linear. Therefore, M is part of a hyperplane. O
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