CHAPTER FOUR

Open Sets and Closed Sets

Open Sets

One of the themes of this (or any other) course in real analysis is the curious interplay
between various notions of “big” sets and “small” sets. We have seen at least one such
measure of size already: Uncountable sets are big, whereas countable sets are small. In
this chapter we will make precise what was only hinted at in Chapter Three — the rather
vague notion of a “thick” set in a metric space. For our purposes, a “thick”™ set will
be one that contains an entire neighborhood of each of its points. But perhaps we can
come up with a better name. . .. Throughout this chapter, unless otherwise specified,
we live in a generic metric space (M, d ).

A set U in a metric space (M, d ) is called an open set if U contains a neighborhood
of each of its points. In other words, U is an open set if, given x € U, there is some
€ > O such that B,(x) Cc U.

Examples 4.1

(a) In any metric space, the whole space M is an open set. The empty set @ is also
open (by default).

(b) In R, any open interval is an open set. Indeed, given x € (a.b), let ¢ = min
{x —a,b—x}. Then, ¢ > 0and (x — &, x + &) C (a, b). The cases (a, o0) and
(—00. b) are similar. While we’re at it. notice that the interval [0, 1), for example,
is not open in R because it does not contain an entire neighborhood of 0.

(¢) In adiscrete space, Bi(x) = {x} is an open set for any x. (Why?) It follows that
every subset of a discrete space is open.

Before we get too carried away, we should follow the lead suggested by our last two
examples and check that every open ball is in fact an open set.

Proposition 4.2. Forany x € M andany € > 0, the open ball B.(x) is an open set.

PROOF. Let y € B.(x). Then d(x.y) < £ and hence § = ¢ — d(x, y) > 0. We
will show that Bs(y) C B.(x) (as in Figure 4.1). Indeed, if d(y,z) < §, then,
by the triangle inequality, d(x,z) < d(x, ¥) + d(y,2) < d(x,y)+ 8 = d(x,y) +
e—dx,y)=¢. O

Let’s collect our thoughts. First, every open ball is open. Next, it follows from the
definition of open sets that an open set must actually be a union of open balls. In fact,

St



52 Open Sets and Closed Sets

if U is open, then U = | J{B:(x) : B.(x) C U}. Moreover, any arbitrary union of open
balls is again an open set. (Why?) Here’s what all of this means:

Theorem 4.3. An arbitrary union of open sets is again open; that is, if (Uy)gca
is any collection of open sets, then V = | ., Ua is open.

PROOF. If x € V, then x € U, for some a € A. But then, since U, is open,
B.(x)C Uy CVforsomee>0. O

Intersections aren’t nearly as generous:

Theorem 4.4. A finite intersection of open sets is open; that is, if each of

Ui, ....U,isopen, thensoisV =U,N---NU,.
PROOF. If x € V,thenx € U; foralli = 1,...,n. Thus, for each i there is an
€; > 0 such that B,,(x) C U;. But then, setting ¢ = min{e,, ..., &,} > 0, we have

By c i B.x)c N, Ui=V. D

Example 4.5

The word “finite” is crucial in Theorem 4.4 because ﬂ:‘;, (—=1/n,1/n) = {0}, and
{0} is not open in R. (Why?)

Now, since the real line R is of special interest to us, let’s characterize the open
subsets of R. This will come in handy later. But it should be stressed that while this
characterization holds for R, it does not have a satisfactory analogue even in R?. (As
we will see in Chapter Six, not every open set in the plane can be written as a union of
disjoint open disks.)

Theorem 4.6. IfU is an open subset of R, then U may be written as a countable
union of disjoint open intervals. That is, U = | JJ2, I, where I, = (a,, b,) (these
may be unbounded) and I, N\ I, = @ forn # m.

PROOF. We know that U can be written as a union of open intervals (because
each x € U is in some open interval I with I C U). What we need to show is
that U is a union of disjoint open intervals — such a union, as we know, must be
countable (see Exercise 2.15).

We first claim that each x € U is contained in a maximal open interval /, Cc U
in the sense that if x € / C U, where / is an open interval, then we must have
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I C I;. Indeed, given x € U, let
a, = inf{a : (a, x] C U} and b, = sup(b: [x,b) C U}.

Then, I, = (a. b,) satisfies x € I, C U, and I, is clearly maximal. (Check this!)

Next, notice that for any x, y € U we have either I, NI, = @or I, = I,. Why?
Because if I, N I, # @, then I, U I, is an open interval containing both /, and
I,. By maximality we would then have I, = I,. It follows that U is the union of
disjoint (maximal) intervals: U = | J ., x. O

Now any time we make up a new definition in a metric space setting, it is usually
very helpful to find an equivalent version stated exclusively in terms of sequences. To
motivate this in the particular case of open sets, let’s recall:

X, = X <= (x,)iseventually in B,(x), forany ¢ > 0
and hence
Xn = X < (x,)iseventually in U, for any open set U containing x.

(Why?) This last statement essentially characterizes open sets:

Theorem 4.7. A set U in (M, d) is open if and only if, whenever a sequence
(xp) in M converges to a point x € U, we have x, € U for all but finitely
many n.

PROOF. The forward implication is clear from the remarks preceding the theorem.
Let’s see why the new condition implies that U is open:

If U is not open, then there is an x € U such that B,(x)NU* # @ foralle > 0.
In particular, for each n there is some x, € B);,(x) N U¢. But then (x,) C U¢ and
x, — x. (Why?) Thus, the new condition also fails. O

In slightly different language, Theorem 4.7 is saying that the only way to reach a
member of an open set is by traveling well inside the set; there are no inhabitants on
the “frontier.” In essence, you cannot visit a single resident without seeing a whole
neighborhood!

Closed Sets

What good would “open” be without “closed”? A set F in a metric space (M, d ) is said
to be a closed set if its complement F* = M \ F is open.
We can draw several immediate (although not terribly enlightening) conclusions:

Examples 4.8

(a) @ and M are always closed. (And so it is possible for a set to be both open and
closed!)

(b) An arbitrary intersection of closed sets is closed. A finite union of closed sets is
closed.
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(c) Any finite set is closed. Indeed, it is enough to show that {x} is always closed.
(Why?) Given any y € M \ {x} (that is, any y # x), note that ¢ = d(x.y) > 0,
and hence B.(y) C M \ {x}.

(d) In R, each of the intervals [a, b], [a. 00), and (—00, b] is closed. Also, N and A
are closed sets. (Why?)

(e) In a discrete space, every subset is closed.

(f) Sets are not “doors”! (0, 1] is neither open nor closed in R!

As yet, our definition is not terribly useful. It would be nice if we had an intrinsic
characterization of closed sets — something that did not depend on a knowledge of
open sets — something in terms of sequences, for example. For this let’s first make an
observation: F is closed if and only if F* is open, and so F is closed if and only if

x€ FF = B,(x) C F¢ for some ¢ > 0.
But this is the same as saying: F is closed if and only if
B(x)NF#¢ forevery e > 0= x € F. 4.1

This is our first characterization of closed sets. (Compare this with the phrase “F is not
open,” as in the proof of Theorem 4.7. They are similar, but not the same!)

Notice, please, that if x € F, then B,(x)N F # @ necessarily follows; we are inter-
ested in the reverse implication here. In general, a point x that satisfies B,(x) N F # @
forevery ¢ > Oisevidently “very close” to F in the sense that x cannot be separated from
F by any positive distance. At worst, x might be on the “boundary” of F. Thus condition
(4.1) is telling us that a set is closed if and only if it contains all such “boundary” points.
Exercises 33, 40, and 41 make these notions more precise. For now, let’s translate
condition (4.1) into a sequential characterization of closed sets.

Theorem 4.9. Given a set F in (M, d), the following are equivalent:
(i) F isclosed; that is, F* = M \ F is open.
(i) IfB.(x)NF # @ foreverye >0, thenx € F.
(iii) If a sequence (x,) C F converges to some point x € M, then x € F.

PROOF. (i) <= (ii): This is clear from our observations above and the definition
of an open set.

(ii) = (iii): Suppose that (x,) C F and x, 4 ox € M. Then B.(x) contains
infinitely many x, for any £ > 0, and hence B.(x) N F # @ for any ¢ > 0. Thus
x € F, by (ii).

(iii) = (i): If B.(x) N F # @ for all ¢ > 0, then for each n there is an
Xn € By;a(x) N F. The sequence (x,) satisfies (x,) C F and x, — x. Hence, by
(ii)y, xe F. O

Condition (iii) of Theorem 4.9 is just a rewording of our sequential characterization
of open sets (Theorem 4.7) applied to U = F*. Most authors take (iii) as the definition
of a closed set. In other words, condition (iii) says that a closed set must contain all of
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its limit points. That is, “closed” means closed under the operation of taking of limits.

(Exercise 33 explores a slightly different, but more precise, notion of limit point.)

EXERCISES

1. Show that an “openrectangle” (a, b) x (c, d) is an open set in R2. More generally,
if A and B are open in R, show that A x B is open in R>. If A and B are closed in
R, show that A x B is closed in R?.

2. If Fis aclosed set and G is an open set in a metric space M, show that F \ G
is closed and that G \ F is open.

3. Some authors say that two metrics d and p on a set M are equivalent if they
generate the same open sets. Prove this. (Recall that we have defined equivalence to
mean that d and p generate the same convergent sequences. See Exercise 3.42.)

4. Prove that every subset of a metric space M can be written as the intersection of
open sets.

5. Let f : R —> R be continuous. Show that {x : f(x) > 0} is an open subset of
R and that {x : f(x) = 0} is a closed subset of R.

6. Give an example of an infinite closed set in R containing only irrationals. Is there
an open set consisting entirely of irrationals?

7. Show that every open set in R is the union of (countably many) open intervals
with rational endpoints. Use this to show that the collection U of all open subsets of
R has the same cardinality as R itself.

8. Show that every open interval (and hence every open set) in R is a countable union
of closed intervals and that every closed interval in R is a countable intersection of
open intervals.

9. Let d be a metric on an infinite set M. Prove that there is an open set U in M
such that both U and its complement are infinite. [Hint: Either (M, d) is discrete or
i'snot....]

10. Giveny = (y,) € H*, N € N,and ¢ > 0, show that {x = (x,) € H™ :
Ixx — |l <€ k=1,..., N}is openin H* (see Exercise 3.10).

11. Lete® = (0,....0.1,0,...), where the kth entry is 1 and the rest are Os.
Show that {e¢® : k > 1} is closed as a subset of ¢,.

12. Let F be the set of all x € £, such that x, = O for all but finitely many n. Is
F closed? open? neither? Explain.

13. Show that ¢y is aclosed subset of €. [Hint: If (x'™) is a sequence (of sequences!)
in cp converging to x € €, note that |x;| < |xk - x,(("’| + |x;"’| and now choose n
so that ka - x,(‘"’| is small independent of k.

14. Show thattheset A = {x € &, : |x,]| < 1/n, n = 1,2,...}is aclosed set
infbutthat B = {x € €, : |x,| < 1/n, n = 1,2,...}is not an open set. [Hint:
Does B D B.(0) 7
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Now, as we’ve seen, some sets are neither open nor closed. However, it is possible
to describe the “open part” of a set and the “closure” of a set. Here’s what we’ll do:

Given a set A in (M, d), we define the interior of A, written int(A) or A°, to be the
largest open set contained in A. That is,

int(A) = A° = |_J{U : Uisopenand U C A}
=|J(B:(x): B.(x) C Aforsomex € A, £ >0}  (Why?)
= {x € A: B:(x) C A for some ¢ > 0}.

Note that A° is clearly an open subset of A.
We next define the closure of A, written cl(A) or A, to be the smallest closed set
containing A. That is,

cl(A)=A = ﬂ{F : Fisclosed and A C F}.

Please take note of the “dual” nature of our two new definitions.

Now it is clear that A is a closed set containing A — and necessarily the smallest
one. But it’s not so clear which points are in A or, more precisely, which points are
in A \ A. We could use a description of A that is a little easier to “test” on a given set
A. It follows from our last theorem that x € A if and only if B.(x) N A # @ for every
€ > 0. The description that we are looking for simply removes this last reference to A.

Proposition 4.10. x € A ifand only if B(x)N A # @ for everye > 0.

PROOF. One direction is easy: If B.(x)N A # @ forevery ¢ > 0, then B,(x)NA #
@ for every & > 0, and hence x € A by Theorem 4.9.

Now, for the other direction, let x € A and let ¢ > 0. If B,(x) N A = @, then
A is a subset of (B.(x))", a closed set. Thus, A C (B(x))". (Why?) But this is a
contradiction, because x € A while x ¢ (B;(x))". O

Corollary 4.11. x € A if and only if there is a sequence (x,) C A with x, = x.

That is, A is the set of all limits of convergent sequences in A (including limits of
constant sequences).

Example 4.12

Here are a few easy examples in R. (Check the details!)

(a) int((0, 11) = (0, 1) and cl((0,1]) =[O0, 1],

(b) int({(1/n):n 21} =@ andcl({(1/n) : n > 1}) = {(1/n) : n > 1} U {0},
(c) int(Q) =@ and cl(Q) =R,

(d) int(A) =@ and cl(A) = A.

EXERCISES

Unless otherwise specified, each of the following exercises is set in a generic metric
space (M, d).
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15. Theset A= {y € M :d(x, y) < r}is sometimes called the closed ball about
x of radius r. Show that A is a closed set, but give an example showing that A need
not equal the closure of the open ball B,(x).

16. If(V, | - |) is any normed space, prove that the closed ball {x € V : ||x|| < 1}
is always the closure of the open ball {x € V : ||x|| < 1}.

17. Show that A is open if and only if A° = A and that A is closed if and only if
A=A

18. Given a nonempty bounded subset E of R, show that sup E and inf E are
elements of £. Thus sup E and inf E are elements of E whenever E is closed.

19. Show that diam(A) = diam(A ).
20. If A C B,showthat A C B.Does A C B imply A C B? Explain.

21. If A and B are any setsin M, showthat AUB = AUBand AN B C ANB.
Give an example showing that this last inclusion can be proper.

22. True or false? (A U B)° = A° U B°.

23. If x # yin M, show that there are disjoint open sets U, V with x € U and
y € V. Moreover, show that U and V can be chosen so that even U and V are
disjoint.

24. Show that A = (int(A°))" and that A° = (cl(A))".

25. A set that is simultaneously open and closed is sometimes called a clopen set.

Show that R has no nontrivial clopen sets. [Hint: If U is a nontrivial open subset of
R, show that U is strictly bigger than U .)

26. We define the distance from a point x € M to a nonempty set A in M by
d(x, A) = inf{d(x, a) : a € A}. Prove thatd(x, A) = O if and only if x € A.

27. Show that {[d(x, A) — d(y, A)| < d(x, y) and conclude that the map x —
d(x, A) is continuous.

28. Givenaset Ain M and ¢ > O, show that {x € M : d(x, A) < ¢} is an open
set and that {x € M : d(x, A) < &} is a closed set (and each contains A).

29. Show that every closed set in M is the intersection of countably many open sets
and that every open set in M is the union of countably many closed sets. [Hint: What
is o2, {x € M :d(x, A) < (1/m)}7]

30.

(a) Foreachn € Z,let F, be aclosed subset of (n, n + 1). Show that F = | J,.5 F»
is a closed set in R. [Hint: For each fixed n, first show that there is a §, > 0 so
that |x — y| > 4§, wheneverx € F,andy € F,,, m # n.]

(b) Find a sequence of disjoint closed sets in R whose union is not closed.

31. Ifx ¢ F, where F is closed, show that there are disjoint open sets U, V with
x € U and F C V. (This extends the first result in Exercise 23 since {y} is closed.)
Is it possible to find U and V so that U and V are disjoint? Is it possible to extend
this result further to read: Any two disjoint closed sets are contained in disjoint open
sets?
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32. We define the distance between two (nonempty) subsets A and B of M by
d(A, B) = inf{d(a,b) : a € A, b € B}. Give an example of two disjoint closed
sets A and B in R? with d(A, B) = 0.

33. Let A be a subset of M. A point x € M is called a limit point of A if every
neighborhood of x contains a point of A that is different from x itself, that is, if
(B.(x)\ {x}) N A # @ for every € > 0. If x is a limit point of A, show that every
neighborhood of x contains infinitely many points of A.

34. Show that x is a limit point of A if and only if there is a sequence (x,) in A
such that x, — x and x,, # x for all n.

35. Let A’ be the set of limit points of a set A. Show that A’ is closed and that A =
A’ U A. Show that A’ C A if and only if A is closed. (A’ is called the derived set
of A)

36. Suppose that x, 4x € M,andlet A = {x} U {x, : n > 1}. Prove that A is
closed.

37. Prove the Bolzano-Weierstrass theorem: Every bounded infinite subset of R
has a limit point. [Hint: Use the nested interval theorem. If A is a bounded infinite
subset of R, then A is contained in some closed bounded interval /,. At least one of
the left or right halves of /, contains infinitely many points of A. Call this new closed
interval I,. Continue.]

38. Aset P iscalled perfect if it is empty or if it is a closed set and every point of P
is a limit point of P. Show that A is perfect. Show that R is perfect when considered
as a subset of R?.

39. Show that a nonempty perfect subset P of R is uncountable. This gives yet
another proof that the Cantor set is uncountable. [Hint: First convince yourself that
P is infinite, and assume that P is countable, say P = {x,, x3, ...}. Construct a
decreasing sequence of nested closed intervals [ a,, b, ] such that (a,, b,) N P # @
but x,, € [a,, b, ]. Use the nested interval theorem to get a contradiction.]

40. Ifx € A and x is not a limit point of A, then x is called an isolated point of A.
Show that a point x € A is an isolated point of A if and only if (B,(x) \ {x})NA =@
for some ¢ > 0. Prove that a subset of R can have at most countably many isolated
points, thus showing that every uncountable subset of R has a limit point.

41. Related to the notion of limit points and isolated points are boundary points. A
point x € M is said to be a boundary point of A if each neighborhood of x hits
both A and A°. In symbols, x is a boundary point of A if and only if B,(x)N A # @
and B.(x) N A° # @ for every ¢ > 0. Verify each of the following formulas, where
bdry(A) denotes the set of boundary points of A:

(@) bdry(A) = bdry(A°),

(b) cl(A) = bdry(A) Uint(A),

(c) M = int(A) U bdry(A) U int(A°).

Notice that the first and last equations tell us that each set A partitions M into three
regions: the points “well inside” A, the points “well outside™ A, and the points on the
common boundary of A and A€.
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42. If E is a nonempty bounded subset of R, show that sup E and inf E are both
boundary points of E. Hence, if E is also closed, then sup E and inf E are elements
of E.

43. Show that bdry(A) is always a closed set; in fact, bdry(A) = A \ A°.

44, Show that A is closed if and only if bdry(A) C A.

45. Give examples showing that bdry(A) = @ and bdry(A) = M are both pos-
sible.

46. A set A is said to be dense in M (or, as some authors say, everywhere dense) if
A = M. For example, both Q and R \ Q are dense in R. Show that A is dense in M
if and only if any of the following hold:

(a) Every pointin M is the limit of a sequence from A.

(b) B.(x)N A # @ forevery x € M and every ¢ > 0.

(©) U N A # @ for every nonempty open set U.

(d) A‘ has empty interior.

47. Let G be open and let D be dense in M. Show that GN D = G. Give an
example showing that this equality may fail if G is not open.

48. A metric space is called separable if it contains a countable dense subset. Find
examples of countable dense sets in R, in R?, and in R".

49. Provethat £, and H* are separable. [Hint: Consider finitely nonzero sequences
of the form (ry, ..., r,, 0,0, ...), where each r; is rational.]

50. Show that £, is not separable. [Hint: Consider the set 2N consisting of all
sequences of Os and s, as a subset of £,,. We know that 2N is uncountable. Now
what?]

51. Show that a separable metric space has at most countably many isolated
points.

52. If M is separable, show that any collection of disjoint open sets in M is at most
countable.

53. Can you find a countable dense subset of C[O0, 1]?

54. A set A is said to be nowhere dense in M if int (cl(A)) = @. Show that {x} is
nowhere dense if and only if x is not an isolated point of M.

55. Show that every finite subset of R is nowhere dense. Is every countable subset
of R nowhere dense? Show that the Cantor set is nowhere dense in R.

§6. If A and B are nowhere dense in M, show that A U B is nowhere dense. Give
an example showing that an infinite union of nowhere dense sets need not be nowhere
dense.

§7. If A is closed, show that A is nowhere dense if and only if A€ is dense if and
only if A has an empty interior.

§8. Let (r,) be an enumeration of Q. For each n, let /, be the open interval centered
atr, of radius 27", and let U = | J,;2, I,. Prove that U is a proper, open, dense subset
of R and that U* is nowhere dense in R.
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59. If A is closed, show that bdry(A) is nowhere dense.

60. Show that each of the following is equivalent to the statement “A is nowhere

dense”:

(a) A contains no nonempty open set.

(b) Each nonempty open set in M contains a nonempty open subset that is disjoint
from A.

(c) Each nonempty open set in M contains an open ball that is disjoint from A.

The Relative Metric

Although it is a digression at this point, we need to generate some terminology for
later use. First, given a nontrivial subset A of a metric space (M, d), recall that A
“inherits” the metric d by restriction. Thus, the metric space (A, d) has open sets,
closed sets, convergent sequences, and so on, of its own. How are these related to the
open sets, closed sets, convergent sequences, and so on, of (M, d )? The answer comes
from examining the open balls in (A, d ). Note that for x € A we have

B;‘(x):{aeA:d(x,a)<e}=An{yeM:d(x.y)<e}=AﬂB€'"(x),

where superscripts have been used to distinguish between a ball in A and a ball in M.
Thus, a subset G of A is open in (A, d ), or open relative to A, if, given x € G, there is
some ¢ > 0 such that

G D> BAx)=ANBMx).

This observation leads us to the following:

Proposition 4.13. Let A C M.
(i) AsetG C Aisopenin(A,d)ifandonly if G= ANU, where U is open in
M, d).
(ii) Aset FC Aisclosedin(A,d)ifand only if F = ANC, where C is closed
in(M,d).
(iii) cla(E) = ANcly(E)for any subset E of A (where the subscripts distinguish
between the closure of E in (A, d ) and the closure of E in (M, d)).

PROOF. We will prove (i) and leave the rest as exercises.

First suppose that G = ANU, where U is openin (M,d).If x € G C U, then
x € BM(x) c U for some ¢ > 0. But since G C A, we have x € AN BM(x) =
BA(x) C ANU = G. Thus, G isopenin (A,d).

Next suppose that G is open in (A, d ). Then, for each x € G, there is some
&x > 0 such that x € BA(x) = AN BM(x) C G. But now it is clear that U =
U(BM(x): x € G} is an open set in (M, d) satisfying G = ANU. O

We paraphrase the statement “G is open in (A, d )” by saying that “G is open in A,”
or “G is open relative to A,” or perhaps “G is relatively open in A.” The same goes for
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closed sets. In the case of closures, the symbols cl,(E) are read “the closure of E in
A Another notation for cl,(E) is E*.

Examples 4.14

(a) Let A = (0, 1]U {2}, considered as a subset of R. Then, (0, 1] is open in A and
{2} is both open and closed in A. (Why?)

(b) We may consider R as a subset of R? in an obvious way — all pairs of the form
(x,0), x € R. The metric that R inherits from R? in this way is nothing but the
usual metric on R. (Why?) Similarly, R? may be considered as a natural subset
of R3 (as the xy-plane, for instance). What happens in this case? Figure 4.2

might help.
| _ -
EXERCISES

Throughout, M denotes an arbitrary metric space with metric d.
©> 61. Complete the proof of Proposition 4.13.

> 62. Suppose that A is open in (M, d) and that G C A. Show that G is open in A
if and only if G is open in M. Is the result still true if “open” is replaced everywhere
by “closed”? Explain.

63. Is there a nonempty subset of R that is open when considered as a subset of R2?
closed?

64. Show that the analogue of part (iii) of Proposition 4.13 for relative inte-
riors is false. Specifically, find sets E C A C R such that int,(E) = A while
intg(E) = @.

65. Let A be a subset of M. If G and H are disjoint open sets in A, show that
there are disjoint open sets U and V in M suchthat G = U NAand H =V N A.
[Hint: Let U = |J{BY,(x) : x € G and BA(x) C G). Do the same for V and
H.]

66. Let A C B C M.If Aisdensein B (how would you define this?), and if B is
dense in M, show that A is dense in M.

67. Let G be open and let D be dense in M. Show that G N D is dense in G. Give
an example showing that this may fail if G is not open.

68. If A is a separable subset of M (that is, if A has a countable dense subset of its
own), show that A is also separable.

Figure
4.2



62 Open Sets and Closed Sets

69. A collection (U,) of open sets is called an open base for M if every open set in
M can be written as a union of U, . For example, the collection of all open intervals
in R with rational endpoints is an open base for R (and this is even a countable
collection). (Why?) Prove that M has a countable open base if and only if M is
separable. [Hint: If {x, } is a countable dense set in M, consider the collection of open
balls with rational radii centered at the x,.]

O

Notes and Remarks

For sets of real numbers, the concepts of neighborhoods, limit points (Exercise 33),
derived sets (Exercise 35), perfect sets (Exercise 38), closed sets, and the characteri-
zation of open sets (Theorem 4.6) are all due to Cantor. Fréchet introduced separable
spaces (Exercise 48). Much of the terminology that we use today is based on that used
by either Fréchet or Hausdorff. For more details on the history of these notions see
Dudley [1989], Manheim [1964], Taylor [1982], and Willard [1970]; also see Fréchet
[1928], Haussdorf [1937], and Hobson [1927].

For an alternate proof of Theorem 4.6, see Labarre [1965], and for more on “Cantor-
like”” nowhere dense subsets of R (as in Exercise 58), see the short note in Wilansky
[1953b].



