CHAPTER THREE

Metrics and Norms

In the beginning there were operations — hundreds of them - limits, derivatives, integrals,
sums; all of the many operations on functions, sequences, sets, vectors, matrices, and
whatever else you might have encountered in calculus. The hallmark of twentieth-
century mathematics is that we now view these operations as functions defined on
entire collections of “abstract” objects rather than as specific actions taken on individual
objects, one at a time. Maurice Fréchet, in a short expository article from 1950, had
this to say (the italics are his own):

In modern times it has been recognized that it is possible to elaborate full mathematical
theories dealing with elements of which the nature is not specified, that is, with abstract
elements. A collection of these abstract elements will be called an abstract set. If to this
set there is added some rule of association of these elements, or some relation between
them, the set will be called an abstract space. A natural generalization of function consists
in associating with any element x of an abstract set E a number f(x). Functional analysis
is the study of such “functionals” f(x). More generally, general analysis is the theory of
the transformations y = F|[x] of an element x of an abstract set E into an element y of
another (or the same) abstract set F. It is obvious that the study of general analysis should
be preceded by a discussion of abstract spaces.

It is necessary to keep in mind that these notions are not of a metaphysical nature;
that when we speak of an abstract element we mean that the nature of this element is
indifferent, but we do not mean at all that this element is unreal. Our theory will apply
to all elements; in particular, applications of it may be made to the natural sciences. Of
course, due attention must be paid to any properties which depend essentially on the nature
of any special category of elements under investigation.

Early examples of this type of abstraction appeared in 1906 in Fréchet’s thesis, “Sur
quelques points du calcul functionnel,” in which he introduced a notion of distance de-
fined on abstract sets of points. In particular, Fréchet considered the collection C[0, 1],
consisting of all continuous real-valued functions defined on the closed interval (0, 1 ],
where we measure the distance between two functions by taking the maximum vertical
distance between their graphs; that is, dist( f, g) = maxo<<) | f(¢) — g(¢)|. (This distance
function was actually well known in 1906, but Fréchet was the first to view it as a small
part of a much bigger picture.) Given a notion of distance between elements of C[0, 1],
it makes sense to ask questions like: Is integration continuous? That is, are the numbers
fO' f(t)dt and j},' g(t)dt “close” whenever f and g are “close™?

This new point of view proved to have immediate applications; in that same year
Friedrich Riesz used Fréchet’s ideas to give a new proof of a result of Erhardt Schmidt,
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stating that any orthonormal system in C[0, 1 ] must be countable. In fact, Riesz ex-
tended this result to another collection of functions and in so doing introduced the L,
spaces. Riesz’s techniques revolutionized the study of trigonometric series. To say that
Fréchet’s ideas caught on would be an understatement; the study of modern analysis
would be lost without them. By 1928, Fréchet had compiled a monograph on his re-
search on abstract spaces entitled Les Espaces Abstraits. (The word “space” has come
to connote an abstract set of points that carries with it some additional structure.) Much
of the terminology we will use, and certainly most of our examples of abstract spaces,
can be found in Fréchet’s monograph. By mathematical standards, 1928 is not so very
long ago.

Metric Spaces

Given a set M, how might we define a distance function on M? What would we want a
“reasonable” distance to do? Certainly we would want our distance to be (defined and)
nonnegative for any pair of points in M. Let’s start there: Letd : M x M — [0, 00) be
a nonnegative, real-valued function defined on all pairs of elements from M. We would
probably expect to have d(x, x) = 0 for any x € M. And d(x. y) = 0 should mean that
x = y. We would most likely want our distance to also satisfy d(x, y) = d(y, x) for
all pairs of points x, y € M. Anything else? Well, in the hope of preserving at least
a bit of the geometry granted by the familiar distances in R and R", we might also
require one last property. The distance function should satisfy the triangle inequality:
For each triple of points x, y, z in M, we ask that d(x, y) < d(x,z) + d(z, y). The
triangle inequality is the embodiment of that old saw, “The shortest distance between
two points is a straight line.” This timid little inequality will turn out to be immensely
valuable.

A function d on M x M satisfying the following properties is called a metric on M.

(1) 0 <d(x, y) < oo forall pairs x,y € M.
(i) d(x,y) =0 if and only if x = y.
(iil) d(x, y) =d(y, x) for all pairs x,y € M.
(iv) d(x,y) <d(x,z)+d(z, y) forall x,y,z € M.

A function d on M x M that satisfies all of the above save item (ii) is sometimes called
a pseudometric. Thus, a pseudometric will permit distinct points to be 0 distance apart.

The couple (M, d ), consisting of a set M together with a metric 4 defined on M, is
called a metric space. If a particular metric on M is understood, or if the argument at
hand works equally well for any metric, we may forego this formality and simply refer
to the set M as a metric space, with the tacit understanding that a metric d is available
on demand.

Examples 3.1

(a) Every set M admits at least one metric. For example, check that the function
defined by d(x, y) = | forany x # y in M, and d(x,x) =0 forall x in M, is a
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(b)

(o)

Metrics and Norms

metric. This mundane, but always available, metric is called the discrete metric
on M. It will prove to be much more interesting than first appearances suggest.
A set supplied with its discrete metric will be called a discrete space.

An important example for our purposes is the real line R together with its usual
metric d(a, b) = |a — b|. Any time we refer to R without explicitly naming a
metric, the absolute value metric is always understood to be the one that we
have in mind.

Any subset of a metric space is again a metric space in a very natural way. If d
is a metric on M, and if A is a subset of M, then d(x, y) is defined for any pair of
points x, y € A. Moreover, the restriction of d to A x A obviously still satisfies
properties (i)~(iv). That is, the metric that is defined on M automatically defines
a metric on A by restriction. We will even use the same letter d and simply
refer to the metric space (A, d ). Of particular interest in this regard is that N,
Z, Q, and R \ Q each come already supplied with a natural metric, namely, the
restriction of the usual metric on R. In each case, we will refer to this restriction
as the usual metric.

EXERCISES

1.

Show that

1 1

defines a metric on (0, 00).

> 2.

If d is ametric on M, show that |d(x, z)—d(y, z)| < d(x, y)foranyx,y,z € M.

3. As it happens, some of our requirements for a metric are redundant. To see why
this is so, let M be a set and suppose thatd : M x M — R satisfies d(x, y) = 0 if
and only if x = y, and d(x, y) < d(x, z) +d(y, z) for all x, y, z € M. Prove that
d is a metric; that is, show that d(x, y) > 0 and d(x, y) = d(y, x) hold for all x, y.

4. Let M be a set and suppose thatd : M x M — [0, oo) satisfies properties
(i), (ii), and (iii) for a metric on M and the triangle inequality reversed: d(x, y) >
d(x, z) + d(z, y). Prove that M has at most one point.

§. There are other, albeit less natural, choices for a metric on R. For instance,
check that p(a, b) = /]la — b|, o(a, b) = |a — b|/(1 + |a — b|), and 7(a, b) =
min{|a — b|, 1} each define metrics on R. [Hint: To show that ¢ is a metric, you
might first show that the function F(t) = t/(1 + t) is increasing and satisfies
F(s +1) < F(s) + F(t) for s, t > 0. A similar approach will also work for p
and 7.]

6. Ifdisany metricon M,showthat p(x, y) = J/d(x, y),0(x,y) = d(x, y)/(1+
d(x, y)). and t(x,y) = min{d(x, y), 1} are also metrics on M. [Hint: o(x, y) =
F(d(x, y)), where F is as in Exercise 5.]

7. Here is a generalization of Exercises 5 and 6. Let f : [0, 00) — [0, 00) be
increasing and satisfy f(0) = 0, and f(x) > O for all x > 0. If f also satisfies
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f(x+y) < f(x)+ f(y)forall x, y > 0, then f od is a metric whenever d
is a metric. Show that each of the following conditions is sufficient to ensure that
fx+y)< f(x)+ f(y)forallx,y = 0:

(@) f has a second derivative satisfying f” < 0;

(b) f has a decreasing first derivative;

(¢) f(x)/x is decreasing for x > 0.

[Hint: First show that (a) = (b) == (¢).]

8. If d) and d; are both metrics on the same set M, which of the following yield
metrics on M: d, +d,? max{d,, d>}? min{d,, d}? If d is a metric, is d*> a metric?

9. Recall that 2N denotes the set of all sequences (or “strings”) of Os and 1s. Show
thatd(a. b) = Z;’;, 27"\a, — b,|, where a = (a,) and b = (b,) are sequences of
Os and 1s, defines a metric on 2N.

10. The Hilbert cube H™ is the collection of all real sequences x = (x,) with

Ixal < 1forn=1,2,....

(i) Show thatd(x,y) = Y - 27"|x, — V.| defines a metric on H*®.

(ii) Givenx,y € H* and k € N, let M; = max{jx, — yi|...., |xx — w]|}. Show
that 27 M, < d(x,y) < M, +27*.

11. Let R™ denote the collection of all real sequences x = (x,). Show that the

expression

N1 xs = vl

n=1
defines a metric on R*.
12. Check that d(f, g) = maxX,<<» | f(t) — g(t)| defines a metric on C[a, b],

the collection of all continuous, real-valued functions defined on the closed interval
[a,b].
13. Fréchet’s metric on C[ 0, 1] is by no means the only choice (although we will
see later that it is a good one). For example, show that p(f, g) = fol |f(t)—g(t) dt
ando(f, g) = fol min{| f(t) — g(t)|, 1} dt also define metrics on C[0, 11].

> 14. We say that a subset A of a metric space M is bounded if there is some xo € M
and some constant C < 0o such that d(a, xo) < C for alla € A. Show that a finite
union of bounded sets is again bounded.

> 15. We define the diameter of a nonempty subset A of M by diam(A)=
sup{d(a, b) : a, b € A}. Show that A is bounded if and only if diam(A) is finite.

Normed Vector Spaces

A large and important class of metric spaces are also vector spaces (over R or C).
Notice, for example, that C[0, 1] is a vector space (and even a ring). An easy way to
build a metric on a vector space is by way of a length function or norm. A nerm on a
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vector space V is a function || - || : V — [0, 00) satisfying:

(i) 0<|x]| <oo forall xeV;
(ii) [ixll =0 if and only if x =0 (the zero vector in V);
(iii) |lax]| = || |x|| for any scalar ¢ and any x € V; and
(iv) the triangle inequality: ||x + y|| < ||x|| + |ly|| forallx,y e V.

A function || - || : V — [0, oo) satisfying all of the above properties except (ii) is called
a pseudonorm on V; that is, a pseudonorm permits nonzero vectors to have 0 length.

The pair (V, || - || ), consisting of a vector space V together with a norm on V, is
called a normed vector space (or normed linear space). Just as with metric spaces, we
may be a bit lax with this formality. Phrases such as “let V be a normed vector space”
carry the tacit understanding that a norm is lurking about in the background.

It is easy to see that any norm induces a metric on V by setting d(x, y) = ||x — y||.
We will refer to this particular metric as the usual metric on (V, || || ). We may even be
so bold as to refer to (V, || - || ) as a metric space with the clear understanding that the
usual metric induced by the norm is the one that we have in mind. Not all metrics on
a vector space come from norms, however, so we cannot afford to be totally negligent
(see Exercise 16).

Examples 3.2

(a) The absolute value function | - | clearly defines a norm on R.
(b) Each of the following defines a norm on R™:

Ixlly = ilx.-l. llxllz = (}l_: Ixilz)m.

i=l i=1
and |Ixlloc = max;<;<n |x;|, where x = (x,...,x,) € R". The first and last
expressions are very easy to check while the second takes a bit more work.
(Although this is probably familiar from calculus, we will supply a proof shortly.)
The function || - ||, is often called the Euclidean norm and is generally accepted
as the norm of choice on R". As it happens, for any 1 < p < oo, the expression
Ixll, = (X |x,.|p)‘/ P defines a norm on R"; see Theorem 3.8.
(c) Each of the following defines a norm on C[a, b]:

b b 172
Iflh = f IfOldr, IIflIz=(/ If(t)lzdt) .

and  |fllw = max 1£()]

Again, the second expression is hardest to check (and we will do so later; for
now, see Exercise 25). The last expression is generally taken as “the” norm on

Cla,b].

(d) If(V, || - Il) is a normed vector space, and if W is a linear subspace of V, then
W is also normed by || - ||. That is, the restriction of || - || to W defines a norm
on W.

(e) We might also consider the sequence space analogues of the “scale” of norms
on R” given in (b). For 1 < p < oo, we define ¢, to be the collection of all
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real sequences x = (x,) for which Y12, |x,|P < oo, and we define £, to be
the collection of all bounded real sequences. Each ¢, is a vector space under
“coordinatewise” addition and scalar multiplication. Moreover, the expression
¥, = (X 1%17)""? if 1 < p < 00 of |Ix[leo = sup, |xa| if p = 0o defines a
norm on ¢,. The cases p = 1 and p = oo are easy to check (see Exercise 21),
the case p = 2 is given as Theorem 3.4, while the case 1 < p < oo is given as
Theorem 3.8.

We can complete the details of several of our examples if we prove that ¢; is a vector
space and that || - ||; is a norm on €,. Now it is easy to see that if ||x||; = 0, then x, =0
for all n and hence that x = 0 (the zero vector in ¢;). Also, given x € £, and o € R,
it is easy to see that ax € £,, where ax = (ax,), and that |ax|l2 = |a|llx|l>. What is
not so clear is whether x + y = (x, + y,) is in £; whenever x and y are in £,. In other
words, if x and y are square-summable, does it follow that x + y is square-summable?
A moment’s reflection will convince you that to answer this question we will need
to know something about the “dot product” Y x,y,. This extra bit of information is
supplied by the following lemma.

Lemma 3.3. (The Cauchy-Schwarz Inequality) Y2, [x;yil < lixll2 llyll2 for
any x, y € €.

PROOF. To simplify our notation a bit, let’s agree to write (x, y) = }_x;y;. We
first consider the case where x, y € R” (that is, x; = 0 = y; for all i > n). In this
case, (x, y) is the usual “dot product” in R". Also notice that we may suppose
that x, y # 0. (There is nothing to show if either is 0.)

Now let t € R and consider

0 < lIx +tyll3 = (x + ty, x + ty) = lIx||3 + 2¢(x, y) + 2|lyll3.

Since this (nontrivial) quadratic in r is always nonnegative, it must have a nonpos-
itive discriminant. (Why?) Thus, (2(x, y))2 —4|ix[13 lyl3 < Oor, after simplifying,
Ix, ¥)1 < lixll2 llyllz. Thatis, |37, xiyi| < llxll2 iyl

Now this isn’t quite what we wanted, but it actually implies the stronger in-
equality in the statement of the lemma. Why? Because the inequality that we have
shown must also hold for the vectors (|x;]) and (|y;| ). That is,

n
leill}’il < =D KCyiDlz = lxliz Iy ll2-
i=1

Finally, let x, y € £,. Then for each n we have

n n 12 , 172

D vl < (Z |x.~|2) (Z |y.-|2> < Ixliz 1y llz.

i=1 i=1 i=]
Thus, Y 2, x;y; must be absolutely convergent and satisfy Y o, |xiyi| <
xllz iyll. O

Now we are ready to prove the triangle inequality for the £;-norm.
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Theorem 3.4. (Minkowski’s Inequality) Ifx, y € €, then x + y € €,. Moreover,
flx + yll2 < lxll2 + llyll2

PROOF. It follows from the Cauchy-Schwarz inequality that for each n we have

n n

Dolxi4yl =) Inl? +zznjxiy,~ + Z"jlyilz
i=1 i=1

i=1 i=1

< xl3 + 20 l2 Iyllz + Iy13 = Clellz + Iyllz) -

Thus, since n is arbitrary, we have x + y € €> and ||x + y[l2 < lIxll2 + llyll.. O

We have now shown that ¢, is a vector space and that || - ||, is a norm on €;. As you
have no doubt already surmised, the proof is essentially identical to the one used to
show that || - ||> is a norm on R". In the next section a variation on this theme will be
used to prove that ¢, is a vector space and that || - ||, is a norm.

EXERCISES

16. Let V be a vector space, and let d be a metric on V satisfying d(x,y) =
d(x — y,0) and d(ax, ay) = |a|d(x, y) for every x, y € V and every scalar «.
Show that || x|| = d(x, 0) defines a norm on V (that has d as its “‘usual” metric). Give
an example of a metric on the vector space R that fails to be associated with a norm
in this way.

17. Recall that for x € R" we have defined ||x||; = Z:’z, Ixi| and |Ix]loc =
max, <; <, |x;|. Check that each of these is indeed a norm on R".

> 18. Show that [|x||s < |lx|l2 <|lx]l; for any x € R". Also check that ||x]|, <
nllxlloc and lixlly < /7 llx[l2-
19. Show that we have Z:;'z, x;yi = |lxll2 [l¥ll2 (equality in the Cauchy-Schwarz
inequality) if and only if x and y are proportional, that is, if and only if either x = ay
or y = ax for some a > 0.

12
20. Show that | A|l = max,<i<a (2], lai;I) /% is a norm on the vector space
R"™™ of all n X m real matrices A = [a; ;].

21. Recall that we defined £, to be the collection of all absolutely summable se-
quences under the norm ||x ||, = Z:‘_’__, |x.|, and we defined ¢, to be the collection
of all bounded sequences under the norm ||x|loc = sup, |X4|. Fill in the details
showing that each of these spaces is in fact a normed vector space.

22. Showthat || x{le < [Ix]|; forany x € £,,and that ||x|[> < |Ix||, forany x € ¢,.

23. The subset of £, consisting of all sequences that converge to O is denoted
by cp. (Note that ¢y is actually a linear subspace of £,; thus cg is also a normed
vector space under || - ||o.) Show that we have the following proper set inclusions:
€, C €y CcoClo.
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More Inequalities

We next supply the promised extension of Theorem 3.4 to the spaces £,, | < p < oo.
Just as in the case of £,, notice that several facts are easy to check. For example, it is clear
that ||x||, = Oimplies thatx = 0,anditis easy toseethat |lax||, = |a/| |lx||, for any scalar
a. Thus we lack only the triangle inequality. We begin with a few classical inequalities
that are of interest in their own right. The first shows that ¢, is at least a vector space:

Lemma3.5. Let 1 < p < oo and let a, b > 0. Then, (a + b)? < 2P(a? + bP).
Consequently, x + y € £, whenever x, y € £,.

PROOF. (a + b)? < (2max({a, b})? = 2P max{a?,bP} < 2P(a? + bP). Thus, if
X,y €Ly, then Y02 |xn + yal? <273 0% | |Xal? +2P 3 02 |yal? <00. O

Lemma 3.6. (Young’s Inequality) Let 1 < p < oo and let q be defined by
1/p+1/q = . Then, for any a, b > 0, we have ab < a®/p + b? /q, with equality
occurring if and only if a?~' = b.

PROOF. Since the inequality trivially holds if either a or b is 0, we may certainly
suppose that a, b > 0. Next notice that g = p/(p — 1) also satisfies | < g < o0
and p — | = p/q = 1/(g — 1). Thus, the functions f(t) = t?~! and g(t) = 97!
are inverses fort > 0.

The proof of the inequality follows from a comparison of areas (see Figure 3.1).
The area of the rectangle with sides of lengths a and b is at most the sum of the
areas under the graphs of the functions y = x”~! for0 < x < aand x = y9~! for

y

0 < y <b. That s,
a b r b9
ab 5/ xP ' dx +f yldy = — 4+ 2
0 0 p q
Clearly, equality can occur only if a?~' = b. O

When p = g = 2, Young's inequality reduces to the arithmetic-geometric mean in-
equality (although it is usually stated in the form vab < (a+b)/2). Young’s inequality
will supply the extension of the Cauchy—-Schwarz inequality that we need.
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Lemma 3.7. (Holder’s Inequality) Let 1 < p < oo and let q be defined by
1/p+1/qg=1.Givenx € £, and y € ¢, we have 3 ;o |xiyil < llxllp Iyl

PROOF. We may suppose that ||x|l, > 0 and ||y|l, > O (since, otherwise, there is
nothing to show). Now, for n > 1 we use Young’s inequality to estimate:

)3 23|

n
XiYi

fixlip Hyllg

i

=1.
||)’||q

+

11
lellp TP g

:=l
Thus, 37, |xiyil < llxll, lylly for any n > 1, and the result follows. O
Our proof of the triangle inequality will be made easier if we first isolate one of the

key calculations. Notice that if x € £, then the sequence (|x,|”~ 1y oe) € ¢4, because
— 1)g = p. Moreover,

00 i/q
1C1xalP =g = (Z lxilp) = x5~
i=1

Theorem 3.8. (Minkowski’s Inequality) Let 1 < p < o0o. Ifx, y € €, then x +
ye€lpand|x+yllp, < lixllp +lylp-

PROOF. We have already shown that x + y € £, (Lemma 3.5). To prove the
triangle inequality, we once again let g be defined by 1/p +1/q = 1, and we now
use Holder’s inequality to estimate:

00 00
Do+ yil? =) Ixi+ vl Ix +yilP
i=1 i=1
00 00
< Yo lnldxi 4yl + ) Iyl 1w+ il
< "x“p “NClxn + ynlp—.l)"q + “}’"p NClxa + )’nlp—l)“q
= lx+yI5~ (Ixllp + lylp) -

That is, [Ix + yllb < llx + yllp_' (IIxII,, + IIyII,,), and the triangle inequality fol-
lows. O

EXERCISES
24. The conclusion of Lemma 3.7 also holds in the case p = 1 and ¢ = 00. Why?

25. The same techniques can be used to show that || fl, = (fol | f(@®))P dt)'/"
defines a norm on C[0, 1] forany 1 < p < o00. State and prove the analogues of
Lemma 3.7 and Theorem 3.8 in this case. (Does Lemma 3.7 still hold in this setting
for p=1and g = 00?)
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26. Givena,b > 0,show thatlim,_, o, (@? + b?)"/? = max{a, b}). [Hint: Ifa < b
and r = a/b, show that (1/p)log(l + r?) — 0 as p — o00.] What happens as
p—>02asp—> —1%as p - —00?

Limits in Metric Spaces

Now that we have generalized the notion of distance, we can easily define the notions
of convergence and continuity in metric spaces. It will help a bit, though, if we first
generate some notation for “small” sets. Throughout this section, unless otherwise
specified, we will assume that we are always dealing with a generic metric space
(M, d).

Given x € M and r > O, the set B,(x) = {y € M : d(x,y) < r} is called the
open ball about x of radius r. If we also need to refer to the metric d, then we write
B?(x). We may occasionally refer to the set {y € M : d(x,y) < r)} as the closed
ball about x of radius r, but we will not bother with any special notation for closed
balls.

Examples 3.9

(a) In R we have B,(x) = (x —r, x +r), the open interval of radius r about x, while
in R? the set B,(x) is the open disk of radius r centered at x.

(b) In adiscrete space By(x) = {x} and B,(x) = M.

(c¢) In anormed vector space (V, || - ||) the balls centered at 0 play a special role (see
Exercise 32); in this setting B,(0) = {x : |Ix]| < r}.

A subset A of M is said to be bounded if it is contained in some ball, that is, if A C
B,(x) for some x € M and some r > 0. But exactly which x and r does not much matter.
In fact, A is bounded if and only if for any x € M we have sup, , d(x, a) < oo. (Why?)
Related to this is the diameter of A, defined by diam(A) = sup{d(a, b) : a, b € A}. The
diameter of A is a convenient measure of size because it does not refer to points outside
of A.

EXERCISES
Each of the following exercises is set in a generic metric space (M, d).

27. Show that diam(B,(x)) < 2r, and give an example where strict inequality
occurs.

28. Ifdiam(A) < r, show that A C B,(a) for some a € A.
> 29. Prove that A is bounded if and only if diam(A) < oo.
> 30. If A C B, show that diam(A) < diam(B).

31. Give an example where diam(A U B) > diam(A) + diam(B).If AN B # @,
show that diam(A U B) < diam(A) + diam(B).
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> 32. Inanormed vector space (V, || - ||) show that B,(x) =x + B,(0) = {x + y :
lIyll < r}and that B,(0) = r B,(0) = {rx : ||x|| < 1}.

A neighborhood of x is any set containing an open ball about x. You should think of
a neighborhood of x as a “thick” set of points near x. We will use this new terminology
to streamline our definition of convergence.

We say that a sequence of points (x,) in M converges to a point x € M if
d(x,,x) — 0. Now, since this definition is stated in terms of the sequence of real
numbers (d(x,, x)) -, we can easily derive the following equivalent reformulations:

(x») converges to x if and only if, given any £ > 0, there is
an integer N > 1 such that d(x,, x) < £ whenevern > N,

or

(x,) converges to x if and only if, given any ¢ > 0, there is
an integer N > 1 such that {x, : n > N} C B.(x).

If it should happen that {x, : n = N} C A for some N, we say that the sequence (x,) is
eventually in A. Thus, our last formulation can be written

(xn) converges to x if and only if, given any ¢ > 0,
the sequence (x,) is eventually in B,(x)

or, in yet another incarnation,

(x») converges to x if and only if the sequence
(x,) is eventually in every neighborhood of x.

This final version is blessed by a total lack of Ns and es! In any event, just as with
real sequences, we usually settle for the shorthand x, — x in place of the phrase (x,)
converges to x. On occasion we will want to display the set M, or d, or both, and so
we may also write x, Ax or x, = x in (M, d ). We also define Cauchy (or d-Cauchy,
if we need to specify d ) in the obvious way: A sequence (x,) is Cauchy in (M, d) if,
given any ¢ > 0, there is an integer N > 1 such that d(x,, x,) < € wheneverm,n > N.
We can reword this just a bit to read: (x,) is Cauchy if and only if, given ¢ > 0, there is
an integer N > 1 such that diam({x, : n > N}) < &. (How?)

Much of what we already know about sequences of real numbers will carry over
to this new setting — but not everything! The reader is strongly encouraged to test the
limits of this transition by supplying proofs for the following easy results.

EXERCISES
Each of the following exercises is set in a metric space M with metric d.
33. Limits are unique. [Hint: d(x, y) < d(x, x,) + d(x,, ¥).]

> 34. Ifx, = xin(M,d), show that d(x,, y) — d(x, y) forany y € M. More
generally, if x, — x and y, — y, show that d(x,, y,) — d(x, y).
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35. Ifx, — x, then x,, — x for any subsequence (x,,) of (x,).

> 36. A convergent sequence is Cauchy, and a Cauchy sequence is bounded (that is,
the set {x, : n > 1} is bounded).

> 37. A Cauchy sequence with a convergent subsequence converges.

38. A sequence (x,) has a Cauchy subsequence if and only if it has a subsequence
(xn,) for which d (x,,, Xn,.,) < 27* for all k.

> 39. Ifevery subsequence of (x,) has a further subsequence that converges to x, then
(x,) converges to x.

Now, while several familiar results about sequences in R have carried over success-
fully to the “abstract” setting of metric spaces, at least a few will not survive the journey.
Two especially fragile cases are: Cauchy sequences need not converge and bounded
sequences need not have convergent subsequences. A few specific examples might help
your appreciation of their delicacy.

Examples 3.10

(a) Consider the sequence (1/n)32, living in the space M = (0, 1] under its usual
metric. Then, (1/n) is Cauchy but, annoyingly, does not converge to any point
in M. (Why?) Notice too that (1/n) is a bounded sequence with no convergent
subsequence.

(b) Consider M = R supplied with the discrete metric. Then, (n)52, is a bounded
sequence with no Cauchy subsequence!

(c) Atleast one good thing happens in any discrete space: Cauchy sequences always
converge. But for a simple reason. In a discrete space, a sequence (x,) is Cauchy
if and only if it is eventually constant; that is, if and only if x, = x for some
(fixed) x and all n sufficiently large. (Why?)

Let’s take a closer look at R" (with its usual metric). Since d(x, y) = |lx — y|2 =
(X7, 1xi—yil?) 12 5 |xj—yjlforany j = 1,...,n,itfollows that a sequence of vectors
x® = (xk, ..., x¥) in R" converges (is Cauchy) if and only if each of the coordinate
sequences (xj )i>, converges (is Cauchy) in R. (Why?) Thus, nearly every fact about
convergent sequences in R “lifts” successfully to R". For example, any Cauchy sequence
in R” converges in R”, and any bounded sequence in R" has a convergent subsequence.

How much of this has to do with the particular metric that we chose for R"? And
will this same result “lift” to the spaces ¢,, £,, or €., for example? We cannot hope
for much, but each of these spaces shares at least one thing in common with R”. Since
all three of the norms || - [Iy, || - ll2, and || - || satisfy [lx|| > |x;| for any j, it follows
that convergence in £, €5, or £, will imply “coordinatewise” convergence. That is, if
x® = (xk)® [k =1,2,...,is a sequence (of sequences!) in, say, £, and if x*) — x
in £;, then we must have x,'f — x, (as k — oo) foreachn = 1,2,.... A simple
example will convince you that the converse does not hold, in general, in this new
setting. The sequence e®) = (0,...,0, 1,0, ...), where the kth entry is | and the rest
are 0s, converges “coordinatewise” to 0 = (0, 0, .. .), but (¢) does not converge to 0
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in any of the metric spaces £, ¢, or £,,. Why? Because in each of the three spaces we
have d(e®, 0) = |le¥]| = 1. In fact, (*’) is not even Cauchy because in each case we
also have [|e®) — ™| > 1 for any k # m.

EXERCISES

40. Here is a positive result about £, that may restore your faith in intuition. Given
any (fixed) element x € ¢,, show that the sequence x*’ = (x,, ..., x,0,...) € §
(i.e., the first k terms of x followed by all Os) converges to x in £,-norm. Show
that the same holds true in ¢, but give an example showing that it fails (in general)
in £o.

41. Given x, y € ¢y, recall that (x, y) = Y ;o x;y;. Show that if x® — x and
)

y® — yin €, then (x®, y®) - (x, y).

> 42, Two metrics d and p on a set M are said to be equivalent if they generate the
same convergent sequences; that is, d(x,, x) — 0 if and only if p(x,, x) — 0.If d
is any metric on M, show that the metrics p, o, and t, defined in Exercise 6, are all
equivalent to d.

> 43. Show that the usual metric on N is equivalent to the discrete metric. Show that
any metric on a finite set is equivalent to the discrete metric.

> 44. Show that the metrics induced by || - ||y, || - ||2, and |} - || oc on IR" are all equivalent.
[Hint: See Exercise 18.]

45. We say that two norms on the same vector space X are equivalent if the metrics

they induce are equivalent. Show that || - || and ||| ||| are equivalent on X if and only
if they generate the same sequences tending to O; that is, {|x,|| — O if and only if
lixa lll = O.

o> 46. Given two metric spaces (M, d ) and (N, p), we can define a metric on the
product M x N in a variety of ways. Our only requirement is that a sequence of
pairs (a,, X,) in M x N should converge precisely when both coordinate sequences
(a,) and (x,) converge (in (M, d ) and (N, p ). respectively). Show that each of the
following define metrics on M x N that enjoy this property and that all three are
equivalent:

di((a, x), (b, y)) = d(a, b) + p(x, y),
dy((a, x), (b, y) = (d(a, b + p(x, )",
dx((a, x), (b, y)) = max{d(a, b), p(x, y)}.
Henceforth, any implicit reference to “the” metric on M x N, sometimes called the

product metric, will mean one of d,, d,, or dw. Any one of them will serve equally
well; use whichever looks most convenient for the argument at hand.

While we are not yet ready for an all-out attack on continuity, it couldn’t hurt to give
a hint as to what is ahead. Given a function f : (M,d) — (N, p) between two metric
spaces, and given a point x € M, we have at least two plausible sounding definitions
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for the continuity of f at x. Each definition is derived from its obvious counterpart for
real-valued functions by replacing absolute values with an appropriate metric.

For example, we might say that f is continuous at x if po(f(x,), f(x)) — 0
whenever d(x,,x) — 0. That is, f should send sequences converging to x into se-
quences converging to f(x). This says that f “commutes” with limits: f(lim,_,o0x,) =
lim,_, » f (x»). Sounds like a good choice.

Or we might try doctoring the familiar £-§ definition from a first course in calculus.
In this case we would say that f is continuous at x if, given any ¢ > 0, there always
exists a § > 0 such that p(f(x), f(¥)) < £ whenever d(x, y) < §. Written in slightly
different terms, this definition requires that f (B{/(x)) C B?(f(x)). That is, f maps a
sufficiently small neighborhood of x into a given neighborhood of f(x).

We will rewrite the definition once more, but this time we will use an inverse image.
Recall that the inverse image of a set A, under a function f : X — Y, is defined to be
the set {x € X : f(x) € A} and is usually written f~'(A). (The inverse image of any set
under any function always makes sense. Although the notation is similar, inverse images
have nothing whatever to do with inverse functions, which don’t always make sense.)
Stated in terms of an inverse image, our condition reads: B (x) C f~'(B2(f(x))).
Look a bit imposing? Well, it actually tells us quite a bit. It says that the inverse image
of a “thick” set containing f(x) must still be “thick” near x. Curious. Figure 3.2 may
help you with these new definitions. Better still, draw a few pictures of your own!

B, (f(x)) f(x) ]

£ (Be(F))

This sets the stage for what is ahead. Each of the two possible definitions for conti-
nuity seems perfectly reasonable. Certainly we would hope that the two turn out to be
equivalent. But what do convergent sequences have to do with “thick” sets? And just
what is a “thick” set anyway?

Notes and Remarks

The quotation at the start of this chapter is taken from Fréchet [1950]; his thesis
appears in Fréchet [1906]. His book, Fréchet [1928], was published as one of the
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volumes in a series of monographs edited by Emile Borel. The authors in this series in-
clude every “name” French mathematician of that time: Baire, Borel, Lebesgue, Lévy,
de La Vallée Poussin, and many others. The full title of Fréchet’s book, including subti-
tle, is enlightening: Les espaces abstraits et leur théorie considérée comme introduction
a 'analyse générale (Abstract spaces and their theory considered as an introduction to
general analysis). The paper by Riesz mentioned in the introductory passage is Riesz
[1906].

It was Hausdorff who gave us the name “metric space.” Indeed, his classic work
Grundziige der Mengenlehre, Leipzig, 1914, is the source for much of our terminology
regarding abstract sets and abstract spaces. An English translation of Hausdorff’s book
is available as Set Theory (Hausdorff [1937]). If we had left it up to Fréchet, we would
be calling metric spaces “spaces of type (D).”

For more on metric spaces, normed spaces, and R", see Copson [ 1968}, Goffman and
Pedrick [1965], Goldberg [1976], Hoffman [1975], Kaplansky [1977], Kasriel [1971],
Kolmogorov and Fomin [1970], and Kuller [1969]. For a look at modern applications
of metric space notions, see Barnsley [1988] and Edgar [1990].

Normed vector spaces were around for some time before anyone bothered to for-
malize their definition. Quite often you will see the great Polish mathematician Stefan
Banach mentioned as the originator of normed vector spaces, but this is only partly true.
In any case, it is fair to say that Banach gave the first thorough treatment of normed
vector spaces, beginning with his thesis (Banach [1922]). We will have cause to mention
Banach’s name frequently in these notes.

The several “name” inequalities that we saw in this chapter are, for the most part,
older than the study of norms and metrics. Most fall into the category of “mean values”
(various types of averages). An excellent source of information on inequalities and
mean values of every shape and size is a dense little book with the apt title Inequalities,
by Hardy, Littlewood, and P6lya [1952]. Beckenbach and Bellman [1961] provide an
elementary introduction to inequalities, including a few applications. For a very slick,
yet elementary proof of the inequalities of Holder and Minkowski, see Maligranda
[1995].

Certain applications to numerical analysis and computational mathematics have
caused a renewed interest in mean values. For a brief introduction to this exciting area,
see the selection “On the arithmetic-geometric mean and similar iterative algorithms™
in Schoenberg [1982], and the articles by Almkvist and Berndt [ 1988], Carlson [1971],
and Miel [1983]. For a discussion of some of the computational practicalities, see
D. H. Bailey [1988].



