ORBIT SPACES OF HILBERT MANIFOLDS

SERGEY ANTONYAN, NATALIA JONARD-PÉREZ AND SAÚL JUÁREZ-ORDÓÑEZ

ABSTRACT. Let G be a compact group acting on a Polish group X by means of automorphisms. It is proved that the orbit space X/G is an ℓ_2 -manifold (resp., homeomorphic to ℓ_2) provided X is a G-ANR (resp., G-AR) and the fixed point set X^G is not locally compact. It is also proved that if a compact group G acts affinely on a separable closed convex subset K of a Fréchet space with a non-locally compact fixed point set K^G , then the orbit space K/G is homeomorphic to ℓ_2 . In particular, (1) if C(Y, X) denotes the space of all maps from a compact metric G-space Y to a non-locally compact Polish ANR (resp., AR) group X, endowed with the compact-open topology and the induced action of G, then the orbit space C(Y,X)/G is an ℓ_2 -manifold (resp., homeomorphic to ℓ_2), and (2) if X is an infinite-dimensional separable Fréchet G-space and cc(X) denotes the hyperspace of all non-empty compact convex subsets of X, endowed with the Hausdorff metric topology and the induced action of G, then the orbit space cc(X)/G is homeomorphic to ℓ_2 , whenever the fixed point set $cc(X)^G$ is not locally compact.

1. INTRODUCTION

All spaces in this paper are assumed to be non-discrete and without isolated points, except for acting groups. As usual, by a *Polish space* we mean a separable completely metrizable topological space. It is known that every Polish group which is an ANR (resp., AR) is either a Lie group or a manifold modelled on the real separable Hilbert space ℓ_2 (resp., homeomorphic either to a Euclidean space \mathbb{R}^n or to the Hilbert space ℓ_2) (see [9, Theorem 3.2] and [8, Corollary 1]).

It is also known that every non-locally compact separable closed convex subset of a Fréchet space is homeomorphic to ℓ_2 (see [8, Theorem 2]).

Also, the hyperspaces of all non-empty compact convex subsets of infinitedimensional separable Banach spaces, endowed with the Hausdorff metric topology induced by the norm, are known to be homeomorphic to ℓ_2 (see [15, Proposition 1.2]).

In this paper we consider a Polish group X together with an action of a compact group G by means of automorphisms (see formula (2.6) below) and

Acknowledgements. The first, second and third authors were supported by CONA-CYT (México) grants 165195, 204028 and 220836, respectively.

²⁰¹⁰ Mathematics Subject Classification. 52A07, 46A55, 54B20, 54C55.

Key words and phrases. Polish group, infinite-dimensional separable Fréchet space, function space, hyperspace of compact convex sets, affine action, orbit space, ℓ_2 -manifold, absolute retract.

we prove that the orbit space X/G is an ℓ_2 -manifold (resp., homeomorphic to ℓ_2) provided X/G is an ANR (resp., AR) and the fixed point set X^G is locally path-connected and has no totally bounded neighborhoods (Theorem 3.2).

As a Corollary, the orbit space X/G is an ℓ_2 -manifold (resp., homeomorphic to ℓ_2), provided X is a G-ANR (resp., G-AR) and the fixed point set is not locally compact (Corollary 3.4).

We also consider a compact group G acting affinely on a separable closed convex subset K of a Fréchet space (see formula (2.7) below) and prove that the orbit space K/G is homeomorphic to ℓ_2 , if the fixed point set K^G is not locally compact (Theorem 4.2).

These results were inspired by those of T. Dobrowolski and H. Toruńczyk [8]. Lemma 3.1 and Theorem 4.2 below are equivariant versions of [8, Lemma 1] and [8, Theorem 2], respectively, which led to the following important corollaries.

Let G be a compact group, Y a compact metric G-space and X a nonlocally compact Polish ANR (resp., AR) group. Denote by C(Y, X) the Polish group of all continuous maps from Y to X, endowed with the compactopen topology and the induced action of G (see formula 2.2 below). Then the orbit space C(Y, X)/G is an ℓ_2 -manifold (resp., homeomorphic to ℓ_2) (see Corollary 3.7).

Likewise, let a compact group G act linearly on an infinite-dimensional separable Fréchet space X and denote by cc(X) the hyperspace of all nonempty compact convex subsets of X endowed with the Hausdorff metric topology and the induced action of G (see formulas (2.4) and (2.5) below). Then the orbit space cc(X)/G is homeomorphic to ℓ_2 , whenever the fixed point set $cc(X)^G$ is not locally compact (Corollary 4.4).

As a by-product, we obtain an alternative proof of Proposition 1.1 below, which is valid for the class of infinite-dimensional separable Fréchet spaces.

Proposition 1.1. [15, Proposition 2.1] For every infinite-dimensional separable Banach space X, the hyperspace cc(X) is homeomorphic to the Hilbert space ℓ_2 .

2. Preliminaries

We refer the reader to the monographs [7] and [12] for the basic notions of the theory of G-spaces. However, we recall here some special definitions and results that will be used throughout the paper.

All maps between topological spaces are assumed to be continuous. A map $f: X \to Y$ between G-spaces is called G-equivariant (or simply equivariant) if f(gx) = gf(x) for every $x \in X$ and $g \in G$. In case G acts trivially on Y (i.e., gy = y for every $g \in G$ and $y \in Y$), an equivariant map $f: X \to Y$ is called *invariant*.

Let (X, d) be a metric G-space. If d(gx, gy) = d(x, y) for every $x, y \in X$ and $g \in G$, then we say that d is a G-invariant metric. That is, every $g \in G$ acts, in fact, as an isometry of X with respect to the metric d. **Proposition 2.1.** [2, Proposition 5] Let G be a compact group and (X, d) a metric G-space. Then the formula:

$$\hat{d}(x,y) = \sup_{g \in G} d(gx,gy), \qquad x,y \in X$$

defines a compatible G-invariant metric on X. Moreover,

- (1) If d is complete, then \hat{d} is complete
- (2) If X is a topological group and d is right or left-invariant, then d is right or left-invariant, respectively.

Let G be a compact group and X a metric G-space with a G-invariant metric d. It is well-known that the quotient topology of the orbit space X/G is generated by the metric

$$d^*(G(x), G(y)) = \inf_{g \in G} d(x, gy), \quad G(x), G(y) \in X/G$$

(see, e.g., [12, Proposition 1.1.12]). Evidently,

(2.1)
$$d^*(G(x), G(y)) \le d(x, y), \quad x, y \in X.$$

For a given topological group G, a metrizable G-space X is called a G-equivariant absolute neighborhood retract (denoted by $X \in G$ -ANR) if for any metrizable G-space Z containing X as an invariant closed subset, there exist an invariant neighborhood U of X in Z and an equivariant retraction $r : U \to X$. If we can always take U = Z, then we say that X is a G-equivariant absolute retract (denoted by $X \in G$ -AR).

Theorem 2.2 ([3, Theorem 8]). Let G be a compact group and X a G-ANR (resp., G-AR). Then the orbit space X/G is an ANR (resp., AR).

A point x_0 in a *G*-space *X* is called a *G*-fixed point if $gx_0 = x_0$ for every $g \in G$. The set of all *G*-fixed points is denoted by X^G .

Theorem 2.3 ([1, Theorem 7]). Let G be a compact group and X a G-ANR (resp., G-AR). Then the fixed point set X^G is an ANR (resp., AR).

By a *linear space* we mean a real topological vector space. A metric d for a linear space X is called *invariant*, if d is compatible with the topology of X and d(x + z, y + z) = d(x, y) for every $x, y, z \in X$.

A *Fréchet space* is a locally convex complete metric linear space with an invariant metric (see [6, Chapter I, \S 6]).

Let G be a topological group and X a linear space. We call X a *linear* G-space if it is a G-space endowed with a linear action of G, i.e., if

$$g(\alpha x + \beta y) = \alpha(gx) + \beta(gy)$$

for every $g \in G$, $\alpha, \beta \in \mathbb{R}$ and $x, y \in X$. If, in addition, X is a Fréchet space endowed with a complete metric which simultaneously is invariant and G-invariant, then we call X a Fréchet G-space.

In particular, if a compact group G acts linearly on a Fréchet space X with complete invariant metric d, then Proposition 2.1 implies that

$$\hat{d}(x,y) = \sup_{g \in G} d(gx,gy), \quad x,y \in X$$

is an invariant and G-invariant complete metric on X.

Theorem 2.4 ([1, Theorem 2]). Let G be a compact group acting linearly on a locally convex metric linear space X and let K be an invariant complete convex subset of X. Then K is a G-AR.

For a compact group G, a compact G-space Y and a space X, we denote by C(Y, X) the space of all maps from Y to X endowed with the compactopen topology and the induced action $G \times C(Y, X) \to C(Y, X)$:

(2.2)
$$(gf)(y) = f(g^{-1}y), g \in G, y \in Y, f \in C(Y, X)$$

(see [1, Lemma 1]).

If X is a topological group with the identity element denoted by 1, then C(Y, X) becomes a topological group with pointwise defined operations, i.e.,

$$(f \cdot h)(y) = f(y) \cdot g(y), \quad f, h \in C(Y, X), \quad y \in Y$$

and

$$f^{-1}(y) = (f(y))^{-1}, \quad y \in Y.$$

The identity element is just the constant map 1 (see e.g., $[5, \S 3]$).

Furthermore, if X admits a complete metric d, then the supremum metric on C(Y, X)

$$\rho(f,j) = \sup_{y \in Y} d(f(y), j(y)), \quad f, j \in C(Y, X)$$

is also complete, and by Proposition 2.1, the metric

(2.3)
$$\hat{\rho}(f,j) = \sup_{g \in G} \rho(gf,gj), \quad f,j \in C(Y,X)$$

defines a complete and G-invariant metric on C(Y, X). If, in addition, Y is metrizable and X is separable, then C(Y, X) is separable (see [10, Theorem 3.4.16]). Note that due to compactness of Y, the topology induced by the metric ρ , and hence, the one induced by the metric $\hat{\rho}$ on C(Y, X), is just the compact-open one. Note also that if X is a linear space and Y = Gis endowed with the following action of G

$$(g, y) \mapsto yg^{-1}, \quad g, y \in G$$

then C(G, X) is a linear space and the action (2.2) is linear and becomes:

$$(gf)(y) = f(yg), \quad g, y \in G, \quad f \in C(Y, X).$$

The following Theorem belongs to Y. Smirnov (see [17, Theorem 2] and [1, Theorem 2]).

Theorem 2.5. Let G be a compact group, X a Tychonoff G-space and $h: X \to Y$ a closed embedding of X into a locally convex linear space Y. Then the map $\tilde{h}: X \to C(G, Y)$ defined by the rule

$$h(x)(g) = h(gx), \qquad x \in X, \qquad g \in G$$

is a closed equivariant embedding of X into the locally convex linear G-space C(G, Y).

Theorem 2.6 ([2, Theorem 8]). Let G be a compact group, Y a compact G-space and X an ANR (resp., AR). Then C(Y, X) is a G-ANR (resp., G-AR).

Let (X, d) be a metric linear G-space. By cc(X) we denote the hyperspace of all non-empty compact convex subsets of X endowed with the Hausdorff metric:

(2.4)
$$d_H(A, B) = \max\left\{\sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A)\right\}, A, B \in cc(X)$$

and the induced action of G:

$$(2.5) (g,A) \mapsto gA = \{ga \mid a \in A\}, \quad g \in G, \quad A \in cc(X).$$

The following theorem is an extension of H. Radström's embedding theorem [13, Theorem 2] and is due to K. Schmidt (see [16, \S 5, 6 and 7]). Recall that a *monoid* is a set together with an associative operation and identity element.

Theorem 2.7. Let X be an infinite-dimensional separable Fréchet space X. Then the hyperspace cc(X) embeds as a convex Polish submonoid of an infinite-dimensional separable Fréchet space.

We say that a topological group G acts on a monoid (X, \cdot) by means of automorphisms if

$$(2.6) g(x \cdot y) = gx \cdot gy$$

for every $g \in G$ and $x, y \in X$, i.e., every $g \in G$ is an automorphism of X.

Analogously, we say that a topological group G acts affinely on a convex subset K of a linear space if

(2.7)
$$g\left(\sum_{i=1}^{n} t_i x_i\right) = \sum_{i=1}^{n} t_i g x_i$$

whenever $x_i \in X$, $t_i \in [0, 1]$ and $\sum_{i=1}^n t_i = 1$, i.e., every $g \in G$ is a self-affine-homeomorphism of K.

A separable Hilbert manifold or an ℓ_2 -manifold is a separable completely metrizable space that admits an open cover each member of which is homeomorphic to an open subset of the Hilbert space ℓ_2 . We refer the reader to [18] and [19] (see also [20]) for the theory of ℓ_2 -manifolds. Nevertheless, below we recall the characterization Theorem for ℓ_2 -manifolds due to H. Toruńczyk as well as a result of J. Mogilski [11], which will be important in the proof of Theorem 4.2.

Throughout the rest of the paper we let D denote the countable disjoint union of *n*-cells $\mathbb{I}^n := [-1, 1]^n$, $n \ge 0$, i.e.,

$$D = \bigsqcup_{n \ge 0} \mathbb{I}^n.$$

Theorem 2.8 ([19, Corollary 3.2] and [8, §2 Condition (*)]). A separable completely metrizable ANR (resp., AR) X is an ℓ_2 -manifold (resp., homeomorphic to ℓ_2) if and only if there is a compatible metric d on X such that

given maps $f: D \to X$ and $\alpha: X \to (0, 1)$, there is a map $g: D \to X$ with $d(g(t), f(t)) < \alpha(f(t))$ for every $t \in D$ and $\{g(\mathbb{I}^n)\}_{n \ge 0}$ is a discrete family in X.

Theorem 2.9 ([11, Corollary 1]). If the product $X \times Y$ is an ℓ_2 -manifold and Y is locally compact, then X is an ℓ_2 -manifold.

3. Orbit spaces of Polish groups

The results of this section are valid for invariant submonoids of Polish groups. For the first lemma, we consider the following situation.

Let H be a topological group with a right-invariant metric ρ and let X be a submonoid of H which is complete with respect to ρ . Further, let a compact group G act on X by means of automorphisms and let d be defined by the rule:

$$d(x,y) = \sup_{g \in G} \rho(gx, gy), \qquad x, y \in X.$$

Then d is a compatible right-invariant and G-invariant complete metric on X (see Proposition 2.1).

With the above notation, the following lemma is a modification of [8, Lemma 1].

Lemma 3.1. Let G be a compact group acting by means of automorphisms on a submonoid X of a topological group H and let d be a compatible rightinvariant and G-invariant complete metric on X. If the fixed point set X^G is locally path connected at the identity $1 \in X$ and no neighborhood of 1 in X^G is totally bounded in the metric d, then given maps $f: D \to X/G$ and $\alpha: X/G \to (0,1)$ there is a map $\tilde{g}: D \to X/G$ such that $d^*(\tilde{g}(t), f(t)) < \alpha(f(t))$ for every $t \in D$ and $\{\tilde{g}(\mathbb{I}^n)\}_{n>0}$ is discrete in X/G.

Proof. Let $\pi: X \to X/G$ be the orbit map and consider the pull-back

$$C = \left\{ (t, x) \in D \times X \mid f(t) = \pi(x) \right\}$$

of X via f with the diagonal action of G. Identify D with the orbit space C/G and write $\phi: C \to D$ for the orbit map and $p: C \to X$ for the equivariant projection to X (see [7, Chapter 1,§ 6(B)]). We have the following commutative diagram:

$$\begin{array}{ccc} C & \xrightarrow{p} & X \\ \downarrow \phi & & \downarrow \pi \\ D & \xrightarrow{f} & X/G \end{array}$$

For every $k \ge 1$, let

 $D_k = \{\phi(t,x) \in D \mid (\alpha \circ f)(\phi(t,x)) \ge 1/k\}, \quad C_k = \phi^{-1}(D_k) \text{ and } \mathbb{L}^{k-1} = \phi^{-1}(\mathbb{I}^{k-1}).$

Assume without loss of generality that $D_2 = \emptyset$. We construct a sequence of equivariant maps $\{g_k : C \to X\}_{k \ge 1}$ and a sequence of positive numbers $\{\epsilon_k\}_{k \ge 1}$ such that for every $k \ge 1$ the following conditions are satisfied:

$$(1)_k g_k = p \text{ in } C \setminus C_{k+1} \text{ and } g_k = g_{k-1} \text{ in } C_{k-1},$$

$$(2)_k \operatorname{dist}(g_k(\mathbb{L}^n \cap C_k), g_k(\mathbb{L}^m)) > \epsilon_k, \quad m < n,$$

$$(3)_k d(g_k(t, x), g_{k-1}(t, x)) < \frac{1}{4}\epsilon_{k-1}, \quad (t, x) \in C,$$

$$(4)_k \epsilon_k < \min\{\frac{1}{k}, \frac{\epsilon_{k-1}}{4}\}.$$

Indeed, define $g_0 = f$ and $\epsilon_0 = 1$ and suppose that g_{k-1} and ϵ_{k-1} are known. By $(2)_{k-1}$, compactness of G and the fact that C_{k-1} is an invariant subset of C, we can find an invariant neighborhood U of C_{k-1} in C such that

$$(5)_k \operatorname{dist}(g_{k-1}(\mathbb{L}^n \cap U), g_{k-1}(\mathbb{L}^m)) > \frac{3\epsilon_{k-1}}{4}, \quad m < n.$$

Let *B* be a path connected neighborhood of 1 in X^G with diam $B < \frac{1}{4}\epsilon_{k-1}$. Since *B* is not totally bounded, there exists $\epsilon_k > 0$ satisfying $(4)_k$ and no compact set in *H* is an ϵ_k -net for *B*. Define $g_k(\mathbb{L}^0) = f(\mathbb{L}^0)$ and assume that $g_k(\mathbb{L}^0 \sqcup \cdots \sqcup \mathbb{L}^{n-1})$ is already known. Let

$$Z = \left\{ ae^{-1} \in H \mid a, e \in g_k(\mathbb{L}^0 \sqcup \cdots \sqcup \mathbb{L}^{n-1}) \cup g_{k-1}(\mathbb{L}^n) \right\}.$$

Due to the choice of ϵ_k and the fact that Z is a compact set in H, there is a point $b \in B$ such that

(3.1)
$$\operatorname{dist}(b, Z) > \epsilon_k.$$

Let $h: I \to B$ be a path such that h(0) = 1 and h(1) = b, and let $\omega: C \to I$ be a Urysohn map such that

$$\omega(C_k \setminus U) \subset \{1\}$$
 and $\omega((C \setminus C_{k+1}) \sqcup C_{k-1}) \subset \{0\}.$

Then the map $v: C \to I$ defined by

$$\upsilon(d,x) = \sup_{g \in G} \omega(d,gx), \quad (d,x) \in C,$$

is invariant and also satisfies

$$v(C_k \setminus U) \subset \{1\}$$
 and $v((C \setminus C_{k+1}) \sqcup C_{k-1}) \subset \{0\}.$

Define $g_k \mid_{\mathbb{L}^n} \colon \mathbb{L}^n \to X$ by the rule

$$g_k(t,x) = h\big(\upsilon(t,x)\big) \cdot g_{k-1}(t,x), \quad (t,x) \in \mathbb{L}^n$$

Since $B \subset X^G$, the map $g_k \mid_{\mathbb{L}^n}$ is equivariant. Indeed, let $q \in G$ and $(t, x) \in \mathbb{L}^n$. Then

$$g_k(t,qx) = h(\upsilon(t,qx)) \cdot g_{k-1}(t,qx) = h(\upsilon(t,x)) \cdot qg_{k-1}(t,x)$$
$$= q(h(\upsilon(t,x))) \cdot g_{k-1}(t,x)) = qg_k(t,x).$$

Condition $(3)_k$ for $g_k |_{\mathbb{L}^n}$ follows from the invariance of the metric d and the choice of B. Condition $(2)_k$ is also satisfied. Indeed, let $(t, x) \in \mathbb{L}^n \cap C_k$, $(s, y) \in \mathbb{L}^m$ and m < n. If $(t, x) \notin U$, then, using inequality (3.1) we get

 $g_k(t,x) = b \cdot g_{k-1}(t,x)$ and $d(g_k(t,x), g_k(s,y)) = d(b, g_k(s,y)(g_{k-1}(t,x))^{-1}) > \epsilon_k$. If $(t,x) \in U$, then $(5)_k$ implies that

$$\frac{3\epsilon_{k-1}}{4} < d(g_{k-1}(t,x), g_{k-1}(s,y)).$$

Using the triangle inequality, we get

$$\frac{3\epsilon_{k-1}}{4} < d(g_{k-1}(t,x),g_k(t,x)) + d(g_k(t,x),g_k(s,y)) + d(g_k(s,y),g_{k-1}(s,y)).$$
Now, condition (3), for $g_k \mid_{\mathbb{T}^n}$ implies

Now, condition $(3)_k$ for $g_k \mid_{\mathbb{L}^n}$ implies

$$\frac{\epsilon_{k-1}}{4} < d\big(g_k(t,x), g_k(s,y)\big)$$

Hence, by $(4)_k$,

$$\epsilon_k < \frac{\epsilon_{k-1}}{4} \le \operatorname{dist}(g_k(\mathbb{L}^n \cap C_k), g_k(\mathbb{L}^m)).$$

Next, if $(t, x) \in \mathbb{L}^n \cap (C \setminus C_{k+1})$, then v(t, x) = 0, and consequently, by $(1)_{k-1}$,

$$g_k(t,x) = g_{k-1}(t,x) = p(t,x).$$

If $(t, x) \in \mathbb{L}^n \cap C_{k-1}$, then also v(t, x) = 0 and clearly $g_k(t, x) = g_{k-1}(t, x)$. Thus $(1)_k$ holds for $g_k \mid_{\mathbb{L}^n}$ and by induction on n we obtain an equivariant map $g_k : C \to X$ fulfilling conditions $(1)_k - (4)_k$.

By $(1)_k$ and $(3)_k$, $k \ge 1$, there is a well-defined equivariant map $g = \lim g_k$, satisfying

(3.2)
$$d(g(t,x), g_k(t,x)) \le \sum_{l \ge k} d(g_{l+1}(t,x), g_l(t,x)) < \frac{1}{4} \sum_{l \ge k} \epsilon_l < \frac{\epsilon_k}{3}.$$

For $(t, x) \in C$, say $(t, x) \in C_k \setminus C_{k-1}$, we have (3.3) $d(g(t, x), p(t, x)) = d(g_k(t, x), g_{k-1}(t, x)) \leq \frac{\epsilon_{k-1}}{3} \leq (k+1)^{-1} \leq (\alpha \circ f)(\phi(t, x)).$

Now we consider the induced maps $\tilde{g}, \tilde{g}_k : D \to X/G, k \ge 1$, of g and g_k , respectively, which are defined by the rules:

$$\widetilde{g}(\phi(t,x)) = \pi(g(t,x))$$
 and $\widetilde{g}_k(\phi(t,x)) = \pi(g_k(t,x)), \quad \phi(t,x) \in D.$

Since $g = \lim g_k$ and π is continuous, we also have $\tilde{g} = \lim \tilde{g}_k$. By (2.1), (3.2) and (3.3),

(3.4)
$$d^*\big(\widetilde{g}\big(\phi(t,x)\big), \widetilde{g}_k\big(\phi(t,x)\big)\big) < \frac{\epsilon_k}{3}$$

and for $\phi(t, x) \in D$, say $\phi(t, x) \in D_k \setminus D_{k-1}$, one has

(3.5)
$$d^*\big(\widetilde{g}\big(\phi(t,x)\big), f\big(\phi(t,x)\big)\big) \le (\alpha \circ f)\big(\phi(t,x)\big).$$

Now, for every $k \ge 1$, condition $(2)_k$ together with the equivariance of g_k imply the following condition:

 $(2')_k \operatorname{dist}(\widetilde{g}_k(\mathbb{I}^n \cap D_k), \widetilde{g}_k(\mathbb{I}^m)) > \epsilon_k, \quad m < n.$ Indeed, let $\phi(t, x) \in \mathbb{I}^n \cap D_k, \phi(s, y) \in \mathbb{I}^m$ and m < n. Then $(t, x) \in \mathbb{L}^n \cap C_k$ and $(s, y) \in \mathbb{L}^m$. Hence,

$$d^*(\widetilde{g}_k(\phi(t,x)), \widetilde{g}_k(\phi(s,y))) = \inf_{q \in G} d(g_k(t,x), qg_k(s,y))$$
$$= \inf_{q \in G} d(g_k(t,x), g_k(s,qy))$$
$$\geq \operatorname{dist}(g_k(\mathbb{L}^n \cap C_k), g_k(\mathbb{L}^m)) > \epsilon_k.$$

Finally, we show that the family $\{\widetilde{g}(\mathbb{I}^n)\}_{n\geq 0}$ is discrete. Assume, by contradiction, that a sequence

$$\widetilde{g}(a_i) \rightsquigarrow \widetilde{x} \in X/G, \qquad a_i \in D \cong C/G$$

and distinct orbits a_i belong to distinct *n*-cells in *D*. Then

$$\inf_{i\in\mathbb{N}} \left(\alpha \circ f\right)(a_i) > 0$$

otherwise, by inequality (3.5), $(f(a_i))$ contains a subsequence $(f(a_j))$ such that

$$f(a_j) \rightsquigarrow \widetilde{x}$$

with $(\alpha \circ f)(a_j) \rightsquigarrow 0$, contradicting the fact that $\alpha(\tilde{x}) > 0$. Therefore, for such a sequence, there is a $k \ge 1$ with $a_i \in D_k$ for every $i \ge 1$ and, by condition $(2')_k$ and inequality (3.4), we get for every i < j,

$$d^*\big(\widetilde{g}(a_i),\widetilde{g}(a_j)\big) = d^*\big(\widetilde{g}_k(a_i),\widetilde{g}_k(a_j)\big) > \epsilon_k,$$

contradicting the convergence of $\widetilde{g}(a_i)$.

Theorem 3.2. Let a compact group G act on a complete submonoid X of a Polish group by means of automorphisms. Then the orbit space X/G is an ℓ_2 -manifold (resp., homeomorphic to ℓ_2), if X/G is an ANR (resp., AR) and X^G is locally path connected and has no totally bounded neighborhood.

Proof. It follows directly from Lemma 3.1 and Theorem 2.8.

Immediate Corollaries are the following:

Corollary 3.3. Let a compact group G act on a complete submonoid X of a Polish group H by means of automorphisms. Then X/G is an ℓ_2 -manifold (resp., homeomorphic to ℓ_2), if X/G is an ANR (resp., AR) and X^G is a non-locally compact ANR.

Proof. Clearly, X^G is itself a Polish submonoid of H. It then follows from [8, Theorem 1] that X^G is an ℓ_2 -manifold. Now the Corollary follows from Theorem 3.2.

Corollary 3.4. Let a compact group G act on a complete submonoid X of a Polish group by means of automorphisms. Assume further, that X is a G-ANR (resp., G-AR). Then X/G is an ℓ_2 -manifold (resp., homeomorphic to ℓ_2), if X^G is not locally compact.

Proof. By Theorems 2.2 and 2.3, the orbit space X/G and the fixed point set X^G are ANR's (resp., AR's). In any case X^G is a non-locally compact ANR and the Corollary follows from Corollary 3.3.

In particular, an infinite-dimensional separable Fréchet G-space X is a Polish group. Hence we have the following Corollaries.

Corollary 3.5. Let a compact group G act linearly on a separable Fréchet space X. Then X/G is homeomorphic to ℓ_2 , if X^G is not locally compact.

Proof. By Theorem 2.4, X is a G-AR. Since X^G is not locally compact, the Corollary follows from Corollary 3.4.

Remark 3.6. The non-local compactness assumption in Corollary 3.5 is essential. The cyclic group \mathbb{Z}_2 acts linearly on the Hilbert space ℓ_2 by reflection at the origin $0 \in \ell_2$ with fixed point set $\ell_2^{\mathbb{Z}_2} = \{0\}$. Since the orbit map $\ell_2 \setminus \{0\} \rightarrow (\ell_2 \setminus \{0\})/\mathbb{Z}_2$ is a two fold covering map, the orbit space $(\ell_2 \setminus \{0\})/\mathbb{Z}_2 = (\ell_2/\mathbb{Z}_2) \setminus \{\mathbb{Z}_2(0)\}$ is not contractible. Since the complement of each point in ℓ_2 is contractible, in fact, $\ell_2 \setminus \{x\}$ is homeomorphic to ℓ_2 for every $x \in \ell_2$ (see e.g., [6, Chapter III, § 5, Corollary 5.1]), the orbit space ℓ_2/\mathbb{Z}_2 is not homeomorphic to ℓ_2 .

Corollary 3.7. Let G be a compact group, Y a compact metric G-space and X a Polish ANR (resp., AR) group. Then the orbit space C(Y,X)/Gis an ℓ_2 -manifold (resp., homeomorphic to ℓ_2), if $C(Y,X)^G$ is not locally compact (e.g., if X is infinite-dimensional).

Proof. Note that the action (2.2) of G on C(Y, X) is by means of automorphisms. Indeed, let $g \in G$, $f, h \in C(Y, X)$ and $y \in Y$. Then

$$(g(f \cdot h))(y) = (f \cdot h)(g^{-1}y) = f(g^{-1}y) \cdot h(g^{-1}y) = (gf)(y) \cdot (gh)(y) = (gf \cdot gh)(y)$$

Thus,

$$q(f \cdot h) = qf \cdot qh.$$

Now Corollary 3.7 follows from Theorem 2.6 and Corollary 3.4.

In the particular case when X is infinite-dimensional, we note that constant maps conform a topological copy of X and they belong to the fixed point set $C(Y, X)^G$, which, by Theorems 2.6 and 2.3, is an AR. Hence, $C(Y, X)^G$, being an infinite-dimensional Polish AR group, is homeomorphic to ℓ_2 , by [8, Corollary 1] and Theorem 2.8, and thus, it is not locally compact. \Box

4. Orbit spaces of separable closed convex subsets of Fréchet spaces

We begin this section with the following equivariant embedding result.

Lemma 4.1. Let a compact group G act affinely on a closed convex subset K of a locally convex linear space X. Then there is a closed affine equivariant embedding of K into the locally convex linear G-space C(G, X).

Proof. Let $j: K \to C(G, X)$ be given by the rule:

$$j(k)(g) = gk, \quad k \in K, \quad g \in G$$

By Theorem 2.5, j is a closed equivariant embedding. Since G acts affinely on K, j is also an affine map. Indeed, let $n \in \mathbb{N}$, $k_i \in K$ and $t_i \ge 0$ such that $\sum_{i=1}^{n} t_i = 1$. Then for every $g \in G$ we have

$$j\Big(\sum_{i=1}^{n} t_i k_i\Big)(g) = g \sum_{i=1}^{n} t_i k_i = \sum_{i=1}^{n} t_i g k_i = \sum_{i=1}^{n} t_i \Big(j(k_i)(g)\Big)$$
$$= \sum_{i=1}^{n} \Big(t_i j(k_i)\Big)(g) = \Big(\sum_{i=1}^{n} t_i j(k_i)\Big)(g).$$

Hence,

$$j\left(\sum_{i=1}^{n} t_i x_i\right) = \sum_{i=1}^{n} t_i j(x_i),$$

showing that j is an affine map. Thus, K embedds as an invariant closed convex subset into the locally convex linear G-space C(G, X).

The following theorem is a modification of [8, Theorem 2].

Theorem 4.2. Let G be a compact group acting affinely on a separable closed convex subset K of a Fréchet space. If K^G is not locally compact, then K/G is homeomorphic to ℓ_2 .

Proof. By Lemma 4.1, we may assume that K is an invariant separable closed convex subset of a Fréchet G-space X. Further, assume without loss of generality that K^G contains the origin 0 of X. Let G act on $X \times \mathbb{R}$ by the rule:

$$(g, (x, t)) \mapsto (gx, t), \quad g \in G, \quad (x, t) \in X \times \mathbb{R}$$

and let

$$Y = \{(x,t) \in X \times [0,\infty) \mid x \in tK\}.$$

Clearly, G acts linearly on $X \times \mathbb{R}$ and Y is an invariant closed convex submonoid of $X \times \mathbb{R}$. By Theorem 2.4, Y is a G-AR. Let $Y_0 := Y \setminus \{(0,0)\}$ and define a map $h: K \times (0,1) \to Y_0$ by the rule:

$$(x,t) \mapsto (tx,t), \quad (x,t) \in K \times (0,1).$$

Since G acts linearly on K, the map h is an equivariant homeomorphism. Hence, the induced map

$$h: (K \times (0,1))/G \to Y_0/G$$

is a homeomorphism. The fact that G acts trivially on (0, 1) and that the orbit of $(0, 0) \in Y$ is just the singleton $\{(0, 0)\}$, imply that the orbit spaces $(K \times (0, 1))/G$ and Y_0/G are homeomorphic to

$$(K/G) \times (0,1)$$
 and $(Y/G)_0 := (Y/G) \setminus \{\{(0,0)\}\}$

respectively. Since $K^G \times \{1\} \subset Y^G = (X^G \times [0, \infty)) \cap Y$ and K^G is not locally compact, the fixed point set Y^G is neither locally compact. It follows from Corollary 3.4 that the orbit space Y/G is homeomorphic to ℓ_2 and, since points can be deleted from ℓ_2 (see e.g., [6, Chapter III, § 5, Corollary 5.1]), the space $(Y/G)_0$ is homeomorphic to ℓ_2 . Consequently, the space $(K/G) \times (0, 1)$ is also homeomorphic to ℓ_2 . By Theorems 2.4 and 2.2, the orbit space K/G is an AR. Finally, by Theorem 2.9, the orbit space K/G is homeomorphic to ℓ_2 . This completes the proof.

Proposition 4.3. Let G be a compact group and X an infinite-dimensional separable Fréchet G-space. Then the hyperspace cc(X) embeds equivariantly as an invariant separable closed convex subset of a Fréchet G-space.

Proof. By Theorem 2.7, we may assume that cc(X) is a Polish convex subset of a infinite-dimensional separable Fréchet space. Then G acts affinely on cc(X) and by Lemma 4.1, cc(X) embeds equivariantly as an invariant separable closed convex subset of a Fréchet G-space, as required.

Corollary 4.4. Let G be a compact group and X an infinite-dimensional separable Fréchet G-space. Then the orbit space cc(X)/G is homeomorphic to ℓ_2 , if $cc(X)^G$ is not locally compact.

Proof. Since fixed points are preserved by equivariant maps, the Corollary follows directly from Proposition 4.3 and Theorem 4.2. \Box

In contrast with Remark 3.6, we end this paper with the following one.

Remark 4.5. The hyperspace $cc(\ell_2)$, which is homeomorphic to the Hilbert space ℓ_2 , becomes a \mathbb{Z}_2 -space with the induced action of \mathbb{Z}_2 described in Remark 3.6. But in this case, the fixed point set $cc(\ell_2)^{\mathbb{Z}_2}$ is not locally compact. Indeed, for every neighborhood U of $\{0\}$ in $cc(\ell_2)^{\mathbb{Z}_2}$, there is an $\epsilon > 0$, such that for every $n \ge 1$, the segment

$$A_n := \{ ta_n + (1-t)(-a_n) \in \ell_2 \mid a_{n_n} = \epsilon \text{ and } a_{n_i} = 0, \text{ if } i \neq n, t \in [0,1] \}$$

belongs to U. Since $d_H(A_n, A_m) = \epsilon$, if $n \neq m$, the sequence $(A_n)_{n\geq 1}$ has no convergent subsequence. Here, the Hausdorff metric d_H is the one induced by the standard metric of ℓ_2 . Thus, we conclude that the orbit space $cc(\ell_2)/\mathbb{Z}_2$ is homeomorphic to the Hilbert space ℓ_2 .

References

- S. A. Antonyan, *Retracts in categories of G-spaces*, Izvestiya Akademii Nauk Armyanskoi SSR. Matematika, Vol. 15, No. 5, (1980), 365-378.
- S. Antonian, Equivariant embeddings into G-AR's, Glasnik Matematički, Vol. 22 (42) (1987), 503-533.
- S. A. Antonyan, Retraction properties of the orbit space, Matem. Sbornik 137 (1988) 300-318; English transl. in: Math. USSR Sbornik 65 (1990) 305-321.
- S. A. Antonyan and N. Jonard-Pérez, Affine group acting on hyperspaces of compact convex subsets of ℝⁿ, Fund. Math., 223, (2013), 99-136.
- T. Banakh, K. Mine, K. Sakai and T. Yagasaki, Spaces of maps into topological groups with the Whitney topology, Topology and its Applications, Vol. 157, No. 6, (2010), 1110-1117.
- C. Bessaga and A. Pelczyński, Selected Topics in Infinite-Dimensional Topology, Polish Scientific Publishers, Warzawa, 1975.
- G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York, 1972.
- T. Dobrowolski and H. Toruńczyk, Separable complete ANR'S admitting a group structure are Hilbert manifolds, Topology and its Applications, 12, (1980), 229-235.
- V. V. Gorbatsevich, A. L. Onishchik and E. B. Vinberg, *Lie Groups and Lie Algebras III: Structure of Lie Groups and Lie Algebras*, Encyclopaedia of Mathematical Sciences, Vol. 41, Springer-Verlag, 1994.
- 10. R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
- J. Mogilski, CE-decompositions of ℓ₂-manifolds, Bulletin de L'Academie Polonaise des Sciences, Serie des sciences mathematiques, Vol. XXVII, No. 3-4, (1979), 309-314.

- R. Palais, *The classification of G-spaces*, Memoirs of the American Mathematical Society, Vol 36, American Mathematical Society, Providence, RI, 1960.
- H. Radström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.
- 14. K. Sakai and M. Yaguchi, *The AR-property of the spaces of closed convex sets*, Colloquium Mathematicum, Vol. 106, No. 1 (2006) 15-24.
- K. Sakai The spaces of compact convex sets and bounded closed convex sets in a Banach space, Houston Journal of Mathematics, Vol. 34, No. 1 (2008) 289-300.
- K. D. Schmidt, *Embedding theorems for classes of convex sets*, Acta Applicandae Mathematicae, Vol. 5, (1986) 209-237.
- Y. M. Smirnov, On equivariant embeddings of G-spaces, Russian Math. Surveys, 31(5) (1976) 198-209.
- H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of *l*₂-manifolds, Fund. Math. 101 (1978) 93-110.
- H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981) 247-262.
- H. Toruńczyk, A correction of two papers concerning Hilbert manifolds, Fund. Math. 125 (1985) 89-93.

Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México Distrito Federal, México.

E-mail address: (S. Antonyan) antonyan@unam.mx

E-mail address: (N. Jonard-Pérez) nat@ciencias.unam.mx

E-mail address: (S. Juárez-Ordóñez) sjo@ciencias.unam.mx