
ORBIT SPACES OF HILBERT MANIFOLDS

SERGEY ANTONYAN, NATALIA JONARD-PÉREZ AND SAÚL
JUÁREZ-ORDÓÑEZ

Abstract. Let G be a compact group acting on a Polish group X by
means of automorphisms. It is proved that the orbit space X/G is an
`2-manifold (resp., homeomorphic to `2) provided X is a G-ANR (resp.,
G-AR) and the fixed point set XG is not locally compact. It is also
proved that if a compact group G acts affinely on a separable closed
convex subset K of a Fréchet space with a non-locally compact fixed
point set KG, then the orbit space K/G is homeomorphic to `2. In par-
ticular, (1) if C(Y,X) denotes the space of all maps from a compact met-
ric G-space Y to a non-locally compact Polish ANR (resp., AR) group
X, endowed with the compact-open topology and the induced action
of G, then the orbit space C(Y,X)/G is an `2-manifold (resp., homeo-
morphic to `2), and (2) if X is an infinite-dimensional separable Fréchet
G-space and cc(X) denotes the hyperspace of all non-empty compact
convex subsets of X, endowed with the Hausdorff metric topology and
the induced action of G, then the orbit space cc(X)/G is homeomorphic
to `2, whenever the fixed point set cc(X)G is not locally compact.

1. Introduction

All spaces in this paper are assumed to be non-discrete and without iso-
lated points, except for acting groups. As usual, by a Polish space we mean
a separable completely metrizable topological space. It is known that every
Polish group which is an ANR (resp., AR) is either a Lie group or a manifold
modelled on the real separable Hilbert space `2 (resp., homeomorphic either
to a Euclidean space Rn or to the Hilbert space `2) (see [9, Theorem 3.2]
and [8, Corollary 1]).

It is also known that every non-locally compact separable closed convex
subset of a Fréchet space is homeomorphic to `2 (see [8, Theorem 2]).

Also, the hyperspaces of all non-empty compact convex subsets of infinite-
dimensional separable Banach spaces, endowed with the Hausdorff metric
topology induced by the norm, are known to be homeomorphic to `2 (see
[15, Proposition 1.2]).

In this paper we consider a Polish group X together with an action of a
compact group G by means of automorphisms (see formula (2.6) below) and
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we prove that the orbit spaceX/G is an `2-manifold (resp., homeomorphic to
`2) providedX/G is an ANR (resp., AR) and the fixed point setXG is locally
path-connected and has no totally bounded neighborhoods (Theorem 3.2).

As a Corollary, the orbit space X/G is an `2-manifold (resp., homeomor-
phic to `2), provided X is a G-ANR (resp., G-AR) and the fixed point set
is not locally compact (Corollary 3.4).

We also consider a compact group G acting affinely on a separable closed
convex subset K of a Fréchet space (see formula (2.7) below) and prove that
the orbit space K/G is homeomorphic to `2, if the fixed point set KG is not
locally compact (Theorem 4.2).

These results were inspired by those of T. Dobrowolski and H. Toruńczyk
[8]. Lemma 3.1 and Theorem 4.2 below are equivariant versions of [8,
Lemma 1] and [8, Theorem 2], respectively, which led to the following im-
portant corollaries.

Let G be a compact group, Y a compact metric G-space and X a non-
locally compact Polish ANR (resp., AR) group. Denote by C(Y,X) the Pol-
ish group of all continuous maps from Y to X, endowed with the compact-
open topology and the induced action of G (see formula 2.2 below). Then
the orbit space C(Y,X)/G is an `2-manifold (resp., homeomorphic to `2)
(see Corollary 3.7).

Likewise, let a compact group G act linearly on an infinite-dimensional
separable Fréchet space X and denote by cc(X) the hyperspace of all non-
empty compact convex subsets of X endowed with the Hausdorff metric
topology and the induced action of G (see formulas (2.4) and (2.5) below).
Then the orbit space cc(X)/G is homeomorphic to `2, whenever the fixed
point set cc(X)G is not locally compact (Corollary 4.4).

As a by-product, we obtain an alternative proof of Proposition 1.1 below,
which is valid for the class of infinite-dimensional separable Fréchet spaces.

Proposition 1.1. [15, Proposition 2.1] For every infinite-dimensional sepa-
rable Banach space X, the hyperspace cc(X) is homeomorphic to the Hilbert
space `2.

2. Preliminaries

We refer the reader to the monographs [7] and [12] for the basic notions
of the theory of G-spaces. However, we recall here some special definitions
and results that will be used throughout the paper.

All maps between topological spaces are assumed to be continuous. A
map f : X → Y between G-spaces is called G-equivariant (or simply equi-
variant) if f(gx) = gf(x) for every x ∈ X and g ∈ G. In case G acts
trivially on Y (i.e., gy = y for every g ∈ G and y ∈ Y ), an equivariant map
f : X → Y is called invariant.

Let (X, d) be a metric G-space. If d(gx, gy) = d(x, y) for every x, y ∈ X
and g ∈ G, then we say that d is a G-invariant metric. That is, every g ∈ G
acts, in fact, as an isometry of X with respect to the metric d.
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Proposition 2.1. [2, Proposition 5] Let G be a compact group and (X, d)
a metric G-space. Then the formula:

d̂(x, y) = sup
g∈G

d(gx, gy), x, y ∈ X

defines a compatible G-invariant metric on X. Moreover,

(1) If d is complete, then d̂ is complete

(2) If X is a topological group and d is right or left-invariant, then d̂ is
right or left-invariant, respectively.

Let G be a compact group and X a metric G-space with a G-invariant
metric d. It is well-known that the quotient topology of the orbit space
X/G is generated by the metric

d∗(G(x), G(y)) = inf
g∈G

d(x, gy), G(x), G(y) ∈ X/G

(see, e.g., [12, Proposition 1.1.12]). Evidently,

(2.1) d∗(G(x), G(y)) ≤ d(x, y), x, y ∈ X.
For a given topological group G, a metrizable G-space X is called a G-

equivariant absolute neighborhood retract (denoted by X ∈ G-ANR) if for
any metrizable G-space Z containing X as an invariant closed subset, there
exist an invariant neighborhood U of X in Z and an equivariant retraction
r : U → X. If we can always take U = Z, then we say that X is a
G-equivariant absolute retract (denoted by X ∈ G-AR).

Theorem 2.2 ([3, Theorem 8]). Let G be a compact group and X a G-ANR
(resp., G-AR). Then the orbit space X/G is an ANR (resp., AR).

A point x0 in a G-space X is called a G-fixed point if gx0 = x0 for every
g ∈ G. The set of all G-fixed points is denoted by XG.

Theorem 2.3 ([1, Theorem 7]). Let G be a compact group and X a G-ANR
(resp., G-AR). Then the fixed point set XG is an ANR (resp., AR).

By a linear space we mean a real topological vector space. A metric d for
a linear space X is called invariant, if d is compatible with the topology of
X and d(x+ z, y + z) = d(x, y) for every x, y, z ∈ X.

A Fréchet space is a locally convex complete metric linear space with an
invariant metric (see [6, Chapter I, § 6]).

Let G be a topological group and X a linear space. We call X a linear
G-space if it is a G-space endowed with a linear action of G, i.e., if

g(αx+ βy) = α(gx) + β(gy)

for every g ∈ G, α, β ∈ R and x, y ∈ X. If, in addition, X is a Fréchet
space endowed with a complete metric which simultaneously is invariant
and G-invariant, then we call X a Fréchet G-space.

In particular, if a compact group G acts linearly on a Fréchet space X
with complete invariant metric d, then Proposition 2.1 implies that

d̂(x, y) = sup
g∈G

d(gx, gy), x, y ∈ X
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is an invariant and G-invariant complete metric on X.

Theorem 2.4 ([1, Theorem 2]). Let G be a compact group acting linearly
on a locally convex metric linear space X and let K be an invariant complete
convex subset of X. Then K is a G-AR.

For a compact group G, a compact G-space Y and a space X, we denote
by C(Y,X) the space of all maps from Y to X endowed with the compact-
open topology and the induced action G× C(Y,X)→ C(Y,X):

(2.2) (gf)(y) = f(g−1y), g ∈ G, y ∈ Y, f ∈ C(Y,X)

(see [1, Lemma 1]).
If X is a topological group with the identity element denoted by 1, then

C(Y,X) becomes a topological group with pointwise defined operations, i.e.,

(f · h)(y) = f(y) · g(y), f, h ∈ C(Y,X), y ∈ Y
and

f−1(y) =
(
f(y)

)−1
, y ∈ Y.

The identity element is just the constant map 1 (see e.g., [5, § 3]).
Furthermore, if X admits a complete metric d, then the supremum metric

on C(Y,X)

ρ(f, j) = sup
y∈Y

d
(
f(y), j(y)

)
, f, j ∈ C(Y,X)

is also complete, and by Proposition 2.1, the metric

(2.3) ρ̂(f, j) = sup
g∈G

ρ(gf, gj), f, j ∈ C(Y,X)

defines a complete and G-invariant metric on C(Y,X). If, in addition,
Y is metrizable and X is separable, then C(Y,X) is separable (see [10,
Theorem 3.4.16]). Note that due to compactness of Y , the topology induced
by the metric ρ, and hence, the one induced by the metric ρ̂ on C(Y,X), is
just the compact-open one. Note also that if X is a linear space and Y = G
is endowed with the following action of G

(g, y) 7→ yg−1, g, y ∈ G
then C(G,X) is a linear space and the action (2.2) is linear and becomes:

(gf)(y) = f(yg), g, y ∈ G, f ∈ C(Y,X).

The following Theorem belongs to Y. Smirnov (see [17, Theorem 2] and
[1, Theorem 2]).

Theorem 2.5. Let G be a compact group, X a Tychonoff G-space and
h : X → Y a closed embedding of X into a locally convex linear space Y .
Then the map h̃ : X → C(G, Y ) defined by the rule

h̃(x)(g) = h(gx), x ∈ X, g ∈ G
is a closed equivariant embedding of X into the locally convex linear G-space
C(G, Y ).
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Theorem 2.6 ([2, Theorem 8]). Let G be a compact group, Y a compact
G-space and X an ANR (resp., AR). Then C(Y,X) is a G-ANR (resp.,
G-AR).

Let (X, d) be a metric linear G-space. By cc(X) we denote the hyperspace
of all non-empty compact convex subsets of X endowed with the Hausdorff
metric:

(2.4) dH(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
, A,B ∈ cc(X)

and the induced action of G:

(2.5) (g, A) 7→ gA = {ga | a ∈ A}, g ∈ G, A ∈ cc(X).

The following theorem is an extension of H. Radström’s embedding theo-
rem [13, Theorem 2] and is due to K. Schmidt (see [16, § 5, 6 and 7]). Recall
that a monoid is a set together with an associative operation and identity
element.

Theorem 2.7. Let X be an infinite-dimensional separable Fréchet space
X. Then the hyperspace cc(X) embeds as a convex Polish submonoid of an
infinite-dimensional separable Fréchet space.

We say that a topological group G acts on a monoid (X, ·) by means of
automorphisms if

(2.6) g(x · y) = gx · gy
for every g ∈ G and x, y ∈ X, i.e., every g ∈ G is an automorphism of X.

Analogously, we say that a topological group G acts affinely on a convex
subset K of a linear space if

(2.7) g
( n∑
i=1

tixi

)
=

n∑
i=1

tigxi

whenever xi ∈ X, ti ∈ [0, 1] and
∑n

i=1 ti = 1, i.e., every g ∈ G is a self-
affine-homeomorphism of K.

A separable Hilbert manifold or an `2-manifold is a separable completely
metrizable space that admits an open cover each member of which is home-
omorphic to an open subset of the Hilbert space `2. We refer the reader
to [18] and [19] (see also [20]) for the theory of `2-manifolds. Nevertheless,
below we recall the characterization Theorem for `2-manifolds due to H.
Toruńczyk as well as a result of J. Mogilski [11], which will be important in
the proof of Theorem 4.2.

Throughout the rest of the paper we let D denote the countable disjoint
union of n-cells In := [−1, 1]n , n ≥ 0, i.e.,

D =
⊔
n≥0

In.

Theorem 2.8 ([19, Corollary 3.2] and [8, § 2 Condition (*)]). A separable
completely metrizable ANR (resp., AR) X is an `2-manifold (resp., homeo-
morphic to `2) if and only if there is a compatible metric d on X such that
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given maps f : D → X and α : X → (0, 1), there is a map g : D → X with
d
(
g(t), f(t)

)
< α

(
f(t)

)
for every t ∈ D and

{
g(In)

}
n≥0 is a discrete family

in X.

Theorem 2.9 ([11, Corollary 1]). If the product X × Y is an `2-manifold
and Y is locally compact, then X is an `2-manifold.

3. Orbit spaces of Polish groups

The results of this section are valid for invariant submonoids of Polish
groups. For the first lemma, we consider the following situation.

Let H be a topological group with a right-invariant metric ρ and let X
be a submonoid of H which is complete with respect to ρ. Further, let a
compact group G act on X by means of automorphisms and let d be defined
by the rule:

d(x, y) = sup
g∈G

ρ(gx, gy), x, y ∈ X.

Then d is a compatible right-invariant and G-invariant complete metric on
X (see Proposition 2.1).

With the above notation, the following lemma is a modification of [8,
Lemma 1].

Lemma 3.1. Let G be a compact group acting by means of automorphisms
on a submonoid X of a topological group H and let d be a compatible right-
invariant and G-invariant complete metric on X. If the fixed point set XG

is locally path connected at the identity 1 ∈ X and no neighborhood of 1 in
XG is totally bounded in the metric d, then given maps f : D → X/G and
α : X/G → (0, 1) there is a map g̃ : D → X/G such that d∗

(
g̃(t), f(t)

)
<

α
(
f(t)

)
for every t ∈ D and {g̃(In)}n≥0 is discrete in X/G.

Proof. Let π : X → X/G be the orbit map and consider the pull-back

C =
{

(t, x) ∈ D ×X | f(t) = π(x)
}

of X via f with the diagonal action of G. Identify D with the orbit space
C/G and write φ : C → D for the orbit map and p : C → X for the equi-
variant projection to X (see [7, Chapter 1,§ 6(B)]). We have the following
commutative diagram:

C
p //

φ
��

X

π
��

D
f // X/G

For every k ≥ 1, let

Dk =
{
φ(t, x) ∈ D | (α◦f)

(
φ(t, x)

)
≥ 1/k

}
, Ck = φ−1(Dk) and Lk−1 = φ−1(Ik−1).

Assume without loss of generality that D2 = ∅. We construct a sequence
of equivariant maps {gk : C → X}k≥1 and a sequence of positive numbers
{εk}k≥1 such that for every k ≥ 1 the following conditions are satisfied:

(1)k gk = p in C\Ck+1 and gk = gk−1 in Ck−1,
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(2)k dist
(
gk(Ln ∩ Ck), gk(Lm)

)
> εk, m < n,

(3)k d
(
gk(t, x), gk−1(t, x)

)
< 1

4
εk−1, (t, x) ∈ C,

(4)k εk < min
{

1
k
, εk−1

4

}
.

Indeed, define g0 = f and ε0 = 1 and suppose that gk−1 and εk−1 are
known. By (2)k−1, compactness of G and the fact that Ck−1 is an invariant
subset of C, we can find an invariant neighborhood U of Ck−1 in C such
that

(5)k dist
(
gk−1(Ln ∩ U), gk−1(Lm)

)
> 3εk−1

4
, m < n.

Let B be a path connected neighborhood of 1 in XG with diamB < 1
4
εk−1.

Since B is not totally bounded, there exists εk > 0 satisfying (4)k and no
compact set in H is an εk-net for B. Define gk(L0) = f(L0) and assume
that gk(L0 t · · · t Ln−1) is already known. Let

Z =
{
ae−1 ∈ H | a, e ∈ gk(L0 t · · · t Ln−1) ∪ gk−1(Ln)

}
.

Due to the choice of εk and the fact that Z is a compact set in H, there
is a point b ∈ B such that

(3.1) dist(b, Z) > εk.

Let h : I → B be a path such that h(0) = 1 and h(1) = b, and let
ω : C → I be a Urysohn map such that

ω(Ck\U) ⊂ {1} and ω
(
(C\Ck+1) t Ck−1

)
⊂ {0}.

Then the map υ : C → I defined by

υ(d, x) = sup
g∈G

ω(d, gx), (d, x) ∈ C,

is invariant and also satisfies

υ(Ck\U) ⊂ {1} and υ
(
(C\Ck+1) t Ck−1

)
⊂ {0}.

Define gk |Ln : Ln → X by the rule

gk(t, x) = h
(
υ(t, x)

)
· gk−1(t, x), (t, x) ∈ Ln.

Since B ⊂ XG, the map gk |Ln is equivariant. Indeed, let q ∈ G and
(t, x) ∈ Ln. Then

gk(t, qx) = h
(
υ(t, qx)

)
· gk−1(t, qx) = h

(
υ(t, x)

)
· qgk−1(t, x)

= q
(
h
(
υ(t, x)

)
· gk−1(t, x)

)
= qgk(t, x).

Condition (3)k for gk |Ln follows from the invariance of the metric d and
the choice of B. Condition (2)k is also satisfied. Indeed, let (t, x) ∈ Ln∩Ck,
(s, y) ∈ Lm and m < n. If (t, x) /∈ U , then, using inequality (3.1) we get

gk(t, x) = b·gk−1(t, x) and d
(
gk(t, x), gk(s, y)

)
= d
(
b, gk(s, y)

(
gk−1(t, x)

)−1)
> εk.

If (t, x) ∈ U , then (5)k implies that

3εk−1
4

< d
(
gk−1(t, x), gk−1(s, y)

)
.
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Using the triangle inequality, we get

3εk−1
4

< d
(
gk−1(t, x), gk(t, x)

)
+ d
(
gk(t, x), gk(s, y)

)
+ d
(
gk(s, y), gk−1(s, y)

)
.

Now, condition (3)k for gk |Ln implies
εk−1

4
< d
(
gk(t, x), gk(s, y)

)
.

Hence, by (4)k,

εk <
εk−1

4
≤ dist

(
gk(Ln ∩ Ck), gk(Lm)

)
.

Next, if (t, x) ∈ Ln ∩ (C\Ck+1), then υ(t, x) = 0, and consequently, by
(1)k−1,

gk(t, x) = gk−1(t, x) = p(t, x).

If (t, x) ∈ Ln ∩ Ck−1, then also υ(t, x) = 0 and clearly gk(t, x) = gk−1(t, x).
Thus (1)k holds for gk |Ln and by induction on n we obtain an equivariant
map gk : C → X fulfilling conditions (1)k − (4)k.

By (1)k and (3)k, k ≥ 1, there is a well-defined equivariant map g = lim gk,
satisfying

(3.2) d
(
g(t, x), gk(t, x)

)
≤
∑
l≥k

d
(
gl+1(t, x), gl(t, x)

)
<

1

4

∑
l≥k

εl <
εk
3
.

For (t, x) ∈ C, say (t, x) ∈ Ck\Ck−1, we have
(3.3)

d
(
g(t, x), p(t, x)

)
= d
(
gk(t, x), gk−1(t, x)

)
≤ εk−1

3
≤ (k+1)−1 ≤ (α◦f)

(
φ(t, x)

)
.

Now we consider the induced maps g̃, g̃k : D → X/G, k ≥ 1, of g and gk,
respectively, which are defined by the rules:

g̃
(
φ(t, x)

)
= π

(
g(t, x)

)
and g̃k

(
φ(t, x)

)
= π

(
gk(t, x)

)
, φ(t, x) ∈ D.

Since g = lim gk and π is continuous, we also have g̃ = lim g̃k. By (2.1),
(3.2) and (3.3),

(3.4) d∗
(
g̃
(
φ(t, x)

)
, g̃k
(
φ(t, x)

))
<
εk
3

and for φ(t, x) ∈ D, say φ(t, x) ∈ Dk\Dk−1, one has

(3.5) d∗
(
g̃
(
φ(t, x)

)
, f
(
φ(t, x)

))
≤ (α ◦ f)

(
φ(t, x)

)
.

Now, for every k ≥ 1, condition (2)k together with the equivariance of gk
imply the following condition:

(2′)k dist
(
g̃k(In ∩Dk), g̃k(Im)

)
> εk, m < n.

Indeed, let φ(t, x) ∈ In∩Dk, φ(s, y) ∈ Im and m < n. Then (t, x) ∈ Ln∩Ck
and (s, y) ∈ Lm. Hence,

d∗
(
g̃k
(
φ(t, x)

)
, g̃k
(
φ(s, y)

))
= inf

q∈G
d
(
gk(t, x), qgk(s, y)

)
= inf

q∈G
d
(
gk(t, x), gk(s, qy)

)
≥ dist

(
gk(Ln ∩ Ck), gk(Lm)

)
> εk.
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Finally, we show that the family
{
g̃(In)

}
n≥0 is discrete. Assume, by

contradiction, that a sequence

g̃(ai) x̃ ∈ X/G, ai ∈ D ∼= C/G

and distinct orbits ai belong to distinct n-cells in D. Then

inf
i∈N

(α ◦ f)(ai) > 0

otherwise, by inequality (3.5),
(
f(ai)

)
contains a subsequence

(
f(aj)

)
such

that
f(aj) x̃

with (α ◦ f)(aj)  0, contradicting the fact that α(x̃) > 0. Therefore, for
such a sequence, there is a k ≥ 1 with ai ∈ Dk for every i ≥ 1 and, by
condition (2′)k and inequality (3.4), we get for every i < j,

d∗
(
g̃(ai), g̃(aj)

)
= d∗

(
g̃k(ai), g̃k(aj)

)
> εk,

contradicting the convergence of g̃(ai). �

Theorem 3.2. Let a compact group G act on a complete submonoid X of
a Polish group by means of automorphisms. Then the orbit space X/G is
an `2-manifold (resp., homeomorphic to `2), if X/G is an ANR (resp., AR)
and XG is locally path connected and has no totally bounded neighborhood.

Proof. It follows directly from Lemma 3.1 and Theorem 2.8. �

Immediate Corollaries are the following:

Corollary 3.3. Let a compact group G act on a complete submonoid X of
a Polish group H by means of automorphisms. Then X/G is an `2-manifold
(resp., homeomorphic to `2), if X/G is an ANR (resp., AR) and XG is a
non-locally compact ANR.

Proof. Clearly, XG is itself a Polish submonoid of H. It then follows from
[8, Theorem 1] that XG is an `2-manifold. Now the Corollary follows from
Theorem 3.2. �

Corollary 3.4. Let a compact group G act on a complete submonoid X of
a Polish group by means of automorphisms. Assume further, that X is a
G-ANR (resp., G-AR). Then X/G is an `2-manifold (resp., homeomorphic
to `2), if XG is not locally compact.

Proof. By Theorems 2.2 and 2.3, the orbit space X/G and the fixed point
set XG are ANR’s (resp., AR’s). In any case XG is a non-locally compact
ANR and the Corollary follows from Corollary 3.3. �

In particular, an infinite-dimensional separable Fréchet G-space X is a
Polish group. Hence we have the following Corollaries.

Corollary 3.5. Let a compact group G act linearly on a separable Fréchet
space X. Then X/G is homeomorphic to `2, if XG is not locally compact.

Proof. By Theorem 2.4, X is a G-AR. Since XG is not locally compact, the
Corollary follows from Corollary 3.4. �
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Remark 3.6. The non-local compactness assumption in Corollary 3.5 is
essential. The cyclic group Z2 acts linearly on the Hilbert space `2 by re-
flection at the origin 0 ∈ `2 with fixed point set `Z2

2 = {0}. Since the orbit
map `2\{0} →

(
`2\{0}

)
/Z2 is a two fold covering map, the orbit space(

`2\{0}
)
/Z2 = (`2/Z2)\

{
Z2(0)

}
is not contractible. Since the complement

of each point in `2 is contractible, in fact, `2\{x} is homeomorphic to `2 for
every x ∈ `2 (see e.g., [6, Chapter III, § 5, Corollary 5.1]), the orbit space
`2/Z2 is not homeomorphic to `2.

Corollary 3.7. Let G be a compact group, Y a compact metric G-space
and X a Polish ANR (resp., AR) group. Then the orbit space C(Y,X)/G
is an `2-manifold (resp., homeomorphic to `2), if C(Y,X)G is not locally
compact (e.g., if X is infinite-dimensional ).

Proof. Note that the action (2.2) of G on C(Y,X) is by means of automor-
phisms. Indeed, let g ∈ G, f, h ∈ C(Y,X) and y ∈ Y . Then(
g(f ·h)

)
(y) = (f ·h)

(
g−1y

)
= f(g−1y)·h(g−1y) = (gf)(y)·(gh)(y) = (gf ·gh)(y).

Thus,
g(f · h) = gf · gh.

Now Corollary 3.7 follows from Theorem 2.6 and Corollary 3.4.
In the particular case when X is infinite-dimensional, we note that constant
maps conform a topological copy of X and they belong to the fixed point
set C(Y,X)G, which, by Theorems 2.6 and 2.3, is an AR. Hence, C(Y,X)G,
being an infinite-dimensional Polish AR group, is homeomorphic to `2, by
[8, Corollary 1] and Theorem 2.8, and thus, it is not locally compact. �

4. Orbit spaces of separable closed convex subsets of
Fréchet spaces

We begin this section with the following equivariant embedding result.

Lemma 4.1. Let a compact group G act affinely on a closed convex subset K
of a locally convex linear space X. Then there is a closed affine equivariant
embedding of K into the locally convex linear G-space C(G,X).

Proof. Let j : K → C(G,X) be given by the rule:

j(k)(g) = gk, k ∈ K, g ∈ G
By Theorem 2.5, j is a closed equivariant embedding. Since G acts affinely
on K, j is also an affine map. Indeed, let n ∈ N, ki ∈ K and ti ≥ 0 such
that

∑n
i=1 ti = 1. Then for every g ∈ G we have

j
( n∑
i=1

tiki

)
(g) = g

n∑
i=1

tiki =
n∑
i=1

tigki =
n∑
i=1

ti

(
j(ki)(g)

)
=

n∑
i=1

(
tij(ki)

)
(g) =

( n∑
i=1

tij(ki)
)

(g).
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Hence,

j
( n∑
i=1

tixi

)
=

n∑
i=1

tij(xi),

showing that j is an affine map. Thus, K embedds as an invariant closed
convex subset into the locally convex linear G-space C(G,X). �

The following theorem is a modification of [8, Theorem 2].

Theorem 4.2. Let G be a compact group acting affinely on a separable
closed convex subset K of a Fréchet space. If KG is not locally compact,
then K/G is homeomorphic to `2.

Proof. By Lemma 4.1, we may assume that K is an invariant separable
closed convex subset of a Fréchet G-space X. Further, assume without loss
of generality that KG contains the origin 0 of X. Let G act on X × R by
the rule: (

g, (x, t)
)
7→ (gx, t), g ∈ G, (x, t) ∈ X × R

and let

Y =
{

(x, t) ∈ X × [0,∞) | x ∈ tK
}
.

Clearly, G acts linearly on X × R and Y is an invariant closed convex
submonoid of X × R. By Theorem 2.4, Y is a G-AR. Let Y0 := Y \{(0, 0)}
and define a map h : K × (0, 1)→ Y0 by the rule:

(x, t) 7→ (tx, t), (x, t) ∈ K × (0, 1).

Since G acts linearly on K, the map h is an equivariant homeomorphism.
Hence, the induced map

h̃ :
(
K × (0, 1)

)
/G→ Y0/G

is a homeomorphism. The fact that G acts trivially on (0, 1) and that the
orbit of (0, 0) ∈ Y is just the singleton {(0, 0)}, imply that the orbit spaces(
K × (0, 1)

)
/G and Y0/G are homeomoprhic to

(K/G)× (0, 1) and (Y/G)0 := (Y/G)\
{
{(0, 0)}

}
respectively. Since KG × {1} ⊂ Y G =

(
XG × [0,∞)

)
∩ Y and KG is

not locally compact, the fixed point set Y G is neither locally compact. It
follows from Corollary 3.4 that the orbit space Y/G is homeomorphic to
`2 and, since points can be deleted from `2 (see e.g., [6, Chapter III, § 5,
Corollary 5.1]), the space (Y/G)0 is homeomorphic to `2. Consequently, the
space (K/G)× (0, 1) is also homeomorphic to `2. By Theorems 2.4 and 2.2,
the orbit space K/G is an AR. Finally, by Theorem 2.9, the orbit space
K/G is homeomorphic to `2. This completes the proof. �

Proposition 4.3. Let G be a compact group and X an infinite-dimensional
separable Fréchet G-space. Then the hyperspace cc(X) embeds equivariantly
as an invariant separable closed convex subset of a Fréchet G-space.
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Proof. By Theorem 2.7, we may assume that cc(X) is a Polish convex sub-
set of a infinite-dimensional separable Fréchet space. Then G acts affinely
on cc(X) and by Lemma 4.1, cc(X) embeds equivariantly as an invariant
separable closed convex subset of a Fréchet G-space, as required. �

Corollary 4.4. Let G be a compact group and X an infinite-dimensional
separable Fréchet G-space. Then the orbit space cc(X)/G is homeomorphic
to `2, if cc(X)G is not locally compact.

Proof. Since fixed points are preserved by equivariant maps, the Corollary
follows directly from Proposition 4.3 and Theorem 4.2. �

In contrast with Remark 3.6, we end this paper with the following one.

Remark 4.5. The hyperspace cc(`2), which is homeomorphic to the Hilbert
space `2, becomes a Z2-space with the induced action of Z2 described in
Remark 3.6. But in this case, the fixed point set cc(`2)

Z2 is not locally
compact. Indeed, for every neighborhood U of {0} in cc(`2)

Z2, there is an
ε > 0, such that for every n ≥ 1, the segment

An :=
{
tan + (1− t)(−an) ∈ `2

∣∣ ann = ε and ani
= 0, if i 6= n, t ∈ [0, 1]

}
belongs to U . Since dH(An, Am) = ε, if n 6= m, the sequence (An)n≥1 has no
convergent subsequence. Here, the Hausdorff metric dH is the one induced by
the standard metric of `2. Thus, we conclude that the orbit space cc(`2)/Z2

is homeomorphic to the Hilbert space `2.
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