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Abstract

Let G a locally compact topological group. Let L be a linear G-space and Y C L
a metrizable convex proper subset. Let X be a paracompact proper G-space with
paracompact orbit space. We will give conditions for Y in order that every equivariant
L.s.c. multivalued mapping ¢ : X = Y with complete and convex values admits an
equivariant selection.

1 Introduction

The classical Michael selection theorem [9] states that every lower semicontinuous multi-
valued mapping from a paracompact space into the non empty closed and convex sets of
a Banach space admits a selection. By following the same method used in Michael [9], it
was proved in [12, Theorem 1.4.9] that every lower semicontinuous multivalued mapping
from a paracompact space into the non empty complete and convex sets of a normed lin-
ear space admits a selection. The proof of these theorems consists on finding an e-near
selection for every positive . Then the required selection apears as the limit of a carefully
constructed sequence of 2~ ""-near selections.

In [5] an equivariant generalization of Michael’s theorem was proved: If G is a compact
group, X is a paracompact G-space and Y is a Banach G-space, then every lower semi-
continuous multivalued equivariant map from X into the non empty convex and closed
subsets of Y admits an equivariant selection. In the proof of this result, the authors used
the vector valued integral with respect to the Haar measure for integrating a (non equiv-
ariant) selection in order to obtain the desired equivariant selection. Because the Haar
integral was used, the completeness of the codomain Y and the compactness of the group
G are necessary.

In the present paper, we will give an equivariant version of Michael’s theorem which
also generalizes the result in [5] (Corollary 5.5). The idea is to follow the Michael’s proof:
first we obtain an equivariant near selection (theorems 4.3 and 4.5) and then we use the
same method used in [12, Theorem 1.4.9] to obtain an equivariant selection (proposition 5.2
and corollaries 5.3, 5.4, 5.5 and 5.6).



2 Preliminaries

If G is a topological group and X is a G-space, for any x € X we denote the stabilizer
subgroup of by G, = {g € G | gz = x}. For a subset S C X and a subgroup H C G,
H(S) denotes the H-saturation of S, i.e., H(S) ={hs|h € H,s € S}. If H(S) = S then
we say that S is an H-invariant set. In particular, G(z) denotes the G-orbit of z, so that
G(x) ={gzr € X | g € G}. The orbit space is denoted by X/G. For any subgroup H C G,
we will denote by G/H the G-space of cosets {gH | g € G} equipped with the action
induced by left translations.

A G-space X is called proper (in the sense of Palais), if every point # € X has a
neighborhood U such that for any other point y € X there exists a neighborhood V of y
such that {g € G | gUNV # (0} has compact closure in G. Each orbit in a proper G-space
is closed, and each stabilizer is compact ([11, Proposition 1.1.4]).

A map f: X — Y between two G-spaces is called equivariant or a G-map if f(gz) =
g(fz) for every x € X and g € G.

Let G be a topological group and X a G-space. A G-space Y is called an equivariant
absolute neighborhood extensor for X (denoted by Y € G-ANE(X)) if, for any closed
invariant subset A C X and any equivariant map f : A — Y, there exists an invariant
neighborhood U of A in X and an equivariant map F : U — Y such that F|4 = f.

Definition 2.1 ([4, Definition 3.1]). A closed subgroup H C G is called a large subgroup,
if there exists a closed normal subgroup N C G such that N C H and G/N s a Lie group.

The large subgroups are characterized in the following result:

Theorem 2.2 ([4, Proposition 3.2]). Let H be a closed subgroup of a locally compact
Hausdorff group G. Then the following conditions are mutually equivalent:

1. H is a large subgroup,
2. G/H is a metrizable G-ANE(X) for every paracompact proper G-space X .
3. G/H is locally contractible.

Let G be a locally compact group. If Y is a proper G-space, then for every point
y € Y the orbit G(y) is G-homeomorphic to G/G,, (see [Proposition 1.1.5, [11]]). This, in
addition with theorem 2.2, yields the following observation:

Observation 2.3. If Y is a proper G space and there is a point y € Y such that its
isotropy group is a large subgroup, then G(y) is a G-ANE for the class of all paracompact
proper G-spaces.

Definition 2.4 ([4, Definition 3.5]). A G-space is called a rich G-space if for any point
x € X and any neighborhood U C X of x, there exists a pointy € U such that the isotropy
group Gy is a large subgroup of G and G, C G.

Definition 2.5 ([10]). Let G be a topologial group, H C G a closed subgroup and X a
G-space. A subset S C X is called an H-slice in X, if:

1. S is H-invariant,



2. the saturation G(S) is open in X,
3. ifge G\ H, then gSNS =10,
4. S is closed in G(S5).

Theorem 2.6 ([4, Definition 3.6]). Let X be a proper G-space and x € X. Then, for any
neighborhood U of x in X, there exist a compact large subgroup K of G with G, C K, and
a K-slice S such that x € S C U. Moreover, if X is a rich G-space, then there exists a
point y € S such that G, = K.

Let X and Y be topological spaces. By a multivalued mapping ¢ from X to Y we
understand a map ¢ from X into the non empty sets of Y. By the symbol

6:X=Y

we shall denote that F' is a multivalued map from X to Y ([7]).
A multivalued map ¢ : X = Y is called lower semicontinuous (l.s.c.) if for each open
subset V C Y, the set
¢=(V)={z e X | o(x) NV # 0}

is open in X.

Let X and Y be G-spaces. A multivalued funtion ¢ : X = Y will be called equivariant,

if
P(gx) = go(x) ={gy |y € ()},
for every z € X and g € G.

A selection for a multivalued map ¢ : X = Y is a continuous mapping f : X — Y
such that f(x) € ¢(x) for every x € X. If X and Y are G-spaces, a selection f: X =Y
will be an equivariant selection if f is a G-map.

A compatible metric d on a G-space X is called invariant or G-invariant, if d(gzx, gy) =
d(z,y) for all g € G and z,y € X.

By a linear G-space we shall mean a real topological vector space on which G acts
continuously and linearly, i.e., g(Ax + py) = A(gz) + p(gy), for every g € G and for all A
and p scalars and z,y € X.

We will denote by G-M the class of all proper G-spaces that admit a G-invariant
metric. Let L be a locally convex linear G-space and Y C L an invariant convex subset
where G acts properly. We will say that (Y, d) belongs to the class G-L if d is a metric in
Y, satisfaying the followings:

1. d is G-invariant,

2. dx+z,y+z2)=d(z,y) for all x,y € Y and z € L such that = + y and = + z belong
toY,

3. all open balls determinated by d are convex sets.

If G is compact, it is easy to see that every metrizable convex and invariant subset
of any locally convex linear G-space belongs to the class G-£. The same happens for



all invariant and convex subsets of any normed linear space where a subgroup of linear
isometries acts.

Finally we will denote by G-P the class of all paracompact proper G-spaces with
paracompact orbit space.

By following the proof of [2, Lemma 1] we can infer the next result:

Lemma 2.7. Let G be a locally compact Hausdorff group and let X be a G space such
that X € P-G. If U is an open invariant covering of X, then there exists a locally finite
open invariant refinement of U.

In the same way, if we follow the proof of [2, Theorem 1] we can prove the following
lemma:

Lemma 2.8. For any open invariant covering {Uy}aca of a proper G-space X such
that X € G-P, there exists an invariant partition of unity {ps}aca subordinated to the
covering {Uqy}aca- That means, po : X — [0,1] is an invariant continuous map, and
o1 ((0,1]) C Uy, for each a € A.

3 A fixed point theorem

Let G be a compact group and let K C L a complete convex and invariant subset of
a locally convex, metrizable linear G-space, L. By C(G, K) we denote the space of all
continuous mappings from G into K, equiped with the compact-open topology. In C(G, K)
we can define a continuous action G x C(G, K) — C(G, K) as follows:

(9, f) = g*f

where g f(h) = gf(h) for every h € G. Foreach f € C(G,K) and g € Glet ,f € C(G,K)
be the map definded by the following formula:

of(h) = f(gh).
Symetrically, we will denote by f, the continuous map in C(G, K) defined by

fo(h) = f(hg).

In [1], the following result is proved which establishes the existence of the vector-valued
integral with respect to the Haar measure:

Proposition 3.1 ([1, Lemma 2]). There exists a continuous mapping [ : C(G,K) — K,
such that

(1) [of =[f=]fg forallge G and f € C(G,K);
(2) [gxf=g][ [ forallge G and f € C(G,K);
(3) if f(g) = xo € K for every g € G, then [ f = xy.

Corollary 3.2. Let G be a compact topological group, and let L be a locally convex,
metrizable linear G-space. If K C L is a G-invariant complete and convex subset, then
there exists a point a € K such that ga = a for all g € G.



Proof. Pick an arbitrary point z € K and define f : G — K as follows:

f(g) =gz

Let f be the map defined in proposition 3.1. We claim that the point a = f f € K is the
desired point. If g and h are arbitrary elements of G, then we have

g f(h) =gf(h) = ghz = f(gh) = 4f(h).
So that g * f = 4f for each g € G. It follows from proposition 3.1 that

ga=g [1=[ovt=[st=[1=a

for any element g € G. This completes the proof. O

4 Equivariant s-near selections

Definition 4.1 ([7]). Let (Y,d) be a metric space. Let F: X =Y be a multivalued map
and € > 0. A continuous mapping f : X — Y s called an e-near selection if for every
reX,
d(f(x),F(z)) = inf d(z,y)<e.
YEF ()

Definition 4.2. Let G be a topological group. Let Y be a convex metric subset of a linear
space where G acts linearly, and let X be an arbitray G-space. We say that Y has the
G-near selection property with respect to X (Y € G-NSP(X)) if every l.s.c. multivalued
equivariant map F : X = Y with complete and convex values has, for every e > 0, an
equivariant e-near selection.

Theorem 4.3. Let G be a locally compact Hausdorff group. Let (Y,d) € G-L and X € G-
P. IfY is a rich G-space, then' Y € G-NSP(X).

Before proving theorem 4.3 let us establish the following lemma which is an equivariant
version of [7, Lemma 3.2].

Lemma 4.4. Let G be a locally compact Hausdorff group, § > 0 and let X and Y be
G-spaces. Supose that there exists a compatible metric d on'Y such that (Y,d) € G-M.
Let ¢ : X =Y be a lower semicontinuous multivalued equivariant mapping. In adition, let
Xo be an invariant subset of X for which there exists a continuous equivariant mapping
f: X =Y such that f|x, is an equivariant §-near selection for ¢|x,. Then for everye > 0
there is an invariant neighborhood U, of Xo such that fly. is an equivariant 6 + e-near
selection.

Proof. Because d is invariant and ¢ and f are equivariant, it is easy to see that

U.= |J /7' (B(f(x0.6/2)) N = (B(f (), +2/2))

ze€Xo

is an invariant neighborhood of Xj. By [7, [Lemma 3.2] the restriction f|y. is a 0 4+ e-near
selection. 0



Proof of Theorem 4.3. Let ¢ : X = Y be a ls.c. multivalued equivariant map with
complete and convex values, and let € > 0. For each x € X, the stabilizer subgroup of =
is compact ([11, Proposition 1.1.4]). In addition, because ¢ is equivariant, we have that

6(x) = ¢(gr) = gé(x), for all g € G-

So, G, is a compact group acting continuously and linearly in the complete and convex
subset, ¢(z). By corollary 3.2, there is a point a, € ¢(x) such that ga,0a, for every
g € G,. Now, the maping p, : G(x) = Y defined by p,(ga,) = ga, is well defined. It is
not dificult to see that m, is an equivariant selection for ¢|g ().

By theorem 2.6 and since Y is a rich G-space, there exists a point y, € B(az,e/2) CY
and there exists a G, -slice S, C B(az,e/2) by y, such that a, € S, and G, is a large
subgroup containing G,. Let r, : G(S;) — G(y,) the equivariant retraction defined by
r2(gs) = gy, for all g € G and s € S,,. We can observe that

d(r(ag),az) = d(y, az) < e/2.

Now we define a new maping f, : G(x) = G(yz) by fz(2) = r2(uz(2)). Clearly f, is
continuous and equivariant. Therefore,

d(fz(gz), ¢(gm)) < d(fz(g9z), 9az) = d(rz(pz(gz), gaz) = d(gyz, 9a) = d(ym az) < 5/2~

Therefore f, is an equivariant /2-near selection for ¢|g(,). By observation 2.3, G(y,) is
a G-ANE for the class of all paracompact proper G-spaces and there exists an invariant
neighborhood W, of G(z) and F, : W,, — Y a continuous and equivariant extension of f.
By lemma 4.4, there exists an invariant neighborhood U, C W, of G(z) such that F, |y,
is an equivariant e-near selection.

Let us do this for every € X. The family {U,}.cx is an open invariant covering
of X. By lemma 2.7 there exists a locally finite open invariant refinement, {Oy}aeca of
{Uz}zex. For each a € A, pick a z(a) € X, such that O, C Uy(,). Now, for each o € A,
we extend the maping F,,)|o, as follows:

F if 2 € O,
Fa(Z) _ x(a)(z)a 1 z€0
Yo, if z € X\ Og,

where y is an arbitrary point in Y. By lemma 2.8, there exists a partition of unity
{Pa}aca subordinated to {Ogy }aca such that each p, : X — [0, 1] is an invariant map.
The desired e-near selection f: X — Y can now be defined by

f@) =) pal)Fala).
acA
To see that this works, we observe first that each x € X has a neighborhood V intersecting
only finitely many O,. In this V| f can be seen as the sum of finitely many continuous
maps, and therefore, f is continuous in X. Furthermore, for each z € X, let Q(z) be the
subset consiting of all a € A such that z € O,. Since p,(z) = 0 for every a ¢ Q(z), then

we have 5
F@) = 3 pal2)Ful).
a€Q(z)



Moreover, if & € Q(z), then z € O, which means that F,(z) = Fy(a)(2). So, we can write
f(z) as follows:
f(z) = Z pa(z)Fm(a)(Z)-
a€Q(z)
Since O, is an invariant subset, we have that gz € O, if and only if z € O,. As a
consequence Q(z) = Q(gz), for every z € X and for all g € G. Now, by using the linearity
of the action we observe that

f(gz) = Z pa(gz)Fz(a)(gz) = Z pO/(Z)gF'ra(Z)

a€Q(gz) a€Q(z)

=49 Z poz(Z)Fr(a)(Z) :gf(z)

a€Q(z)

This proves that f is equivariant. We have still to prove that f is an e-near selection for
¢(x). To this purpose, we must remember that for every z € X, and for every a € Q(z),
the point F(,)(z) belongs to the convex set Ne(¢(z)) = {y € Y | d(y,¢(2)) < €}. So, f(2)
is a convex linear combination of finitely many Fj(,)(2), all of which lie in the convex set
N:(¢(2)), hence f(z) € N-(¢(z)). This completes the proof of the theorem. O

Theorem 4.5. Let G be a locally compact Hausdorff group. Let Y € G-L and X € G-P.
If Y € G-ANE(X), then Y € G-NSP(X).

Proof. Copy the prove of theorem 4.3 as far as the construction of the map p,. Since Y is
a G-ANE(X) we can extend the map p,. directly to a continuous and equivariant mapping
F, defined on an invariant neighborhood W, of G(z). Now the proof follows by copying
word by word the rest of the proof of theorem 4.3. O

Corollary 4.6. Let G be a compact group. Let L be a Banach space where G acts con-
tinuously and linearly. Thus L € G-NSP(X) for every paracompact G-space X .

Proof. The corollary follows immediately from theorem 4.5 and the following lemma 4.7.

O

Lemma 4.7. Let G be a compact group acting linearly and continuously in a Banach
space L. L is a G-ANE(X) for every paracompact G-space X .

Proof. Let A C X be a closed subset of X, and let f : A — L be a continuous and
equivariant map. By [9] L is a ANE(X), meaning that there exists a continuous mapping
F : X — L such that F|4 = f. Lets consider now the map ® : X — C(G, L) defined
by ®(z)(g) = g~'F(gz). The mapping ® is continuous (see [8, p.95]). Finally we define
¢(z) = [ ®(x), where [ is the mapping of proposition 3.1. We claim that ¢ is the desired
map. First, ¢ is the composition of two continuous maps, so ¢ is continuous too.

If a € A then ®(a)(g) = g 1 F(ga) = g~ f(g9a) = g~ '(gf(a)) = f(a). That means that
®(a) € C(G, L) is a constant map. By proposition 3.1 we have ¢(a) = [®(a) = f(a)
which proves that ¢|4 = f. It remains to prove that ¢ is equivariant. First we observe
that

®(hx)(g) = g~ F(ghz) = h(gh) ™ F(ghz) = h(®(x)(gh)) = (h* (x))(gh),



for every h,g € G and © € X. Therefore, ®(ha) = (h* ®(z)),. Finally, by proposition 3.1
we have

6(ha) = /<I>(hx) :/(h*q)(x))h :/h*<I>(a:) :h/<I>(:c) — ho(a).

This proves that ¢ is equivariant and now the proof is complete. O

Corollary 4.8. Let G be a compact Lie group. Let L be a locally convex metrizable linear
G-space. If Y C L is an invariant convex subset, then Y € G-NSP(X) for every metrizable
G-space X.

Proof. By [2, Theorem 1] YV is a G-ANE(X). Now the corollary follows directly from
theorem 4.5. 0

5 Equivariant Selections

Analogously as we have defined the G-near selection property, we can define the selection
property in the following way:

Definition 5.1. Let G be a topological group. Let'Y be convex metric subset linear space
where G acts linearly, and let X be an arbitray G-space. We say that Y has the G
selection property respect to X (Y € G-SP(X)) if every l.s.c. multivalued equivariant map
¢: X =Y with complete and convex values admits an equivartant selection.

Proposition 5.2. Let G be a locally compact Hausdorff group. Let (Y,d) € G-L. If
Y € G-NSP(X) for some G-space X, then' Y € G-SP(X).

Proof. Let ¢ : X = Y be a l.s.c. multivalued equivariant map with complete and convex
values. We will construct, by induction, a sequence of continuous and equivariant maps
fn : X = Y such that, for every z € X,

(a) d(fu(@), fapr (@) <2707V, (n=1,2,..),
(b) d(fu(z),6(z)) <27, (n=1,2,...).

Since Y € G-NSP(X), there exists an equivariant 1/2-near selection f; : X — Y. This
map satisfies (b). Suppose that f1,..., f,, have been constructed and satisfy (a) and (b).
In order to construct the map f,,+1, let us define ¢,, : X = Y as follows:

Pn(2) = ¢(x) N B(fn(w),277).

By [12, lemma 1.4.6], ¢, is a l.s.c. multivalued map. In addition, for each x € X,
¢n(x) is a closed subset of the complete set ¢(x), so ¢, (x) is itself complete. Since the
balls defined by the metric d are convex, and since ¢(z) is convex too, we can infer that
¢(x) is a convex subset of Y.

Finally, the invariance of the metric d and the equivariance of the map f,,, tell us that

g¢7l(x) = g(¢($) n B(fn(l‘), 2—n)) = g(b(l‘) N gB(f'n(x)’ 2—n) = (b(g.]?) N B(fn(gx)7 2—n)’




which means that ¢,, is equivariant. Now we can aply the fact that Y € G-NSP(X) to find
an equivariant 27"+ _near selection for ¢,,, let us say f, 41 : X — Y. Since ¢(x) C ¢(x),
we have that

A frs1(2), 0(2)) < dl( fsa (2), 60 (2) < 27D,
Then, f,+1 satisfies condition (b). In the other hand, ¢, (z) C W Then

A(frr1 (@), fo(@)) < d(fri1(@), (@) + d(Pn (@), fr(x)) < 27T 4 27m < 27

which is (a). This completes the construction by induction.
We claim that lim f,(x) exists and belongs to ¢(z), for every x € X. In order to see
n—oo

this, take an arbitrary « € X. By (b), for every n € N there exists a point a,, € ¢(z) such
that d(fn(x),an) < 27™. Let us consider the sequence (a,)nen C ¢(x). By (a), we have

d(ana an+1) < d(aru fn(x)) + d(fn(x)v fnJrl(x)) + d(fnJrl(lC), an+1($)) < 2—(11—2).

Therefore (a,)nen is a Cauchy sequence contained in the complete subset ¢(z). We con-
clude that lim a, exists and belongs to ¢(z). Since d(fn(z),a,) < 27" for every n,

n— oo
this implies that lim f,(z) = f(z) also exists and is equal to lim a,. This means
n—oo n— oo

that f(x) € ¢(z). By (a), the secuence (fy,)nen is uniformly Cauchy and thus converges
uniformly to f. This implies that f is continuous.
Finally, for every g € G and = € X, we have

flgz) = Tim fulgw) = lim gfa(e) =g lim fa()) = gf(2).

This proves that f is an equivariant selection for ¢, meaning that ¥ € G-SP(x) as we
desired.

O

In addition with theorems 4.3 and 4.5 and corollaries 4.6 and 4.8, proposition 5.2 gives
us the following and last results:

Corollary 5.3. Let G be a locally compact Hausdorff group. Let Y € G-L and X € G-P.
IfY is a rich G-space, then Y € G-SP(X).

Corollary 5.4. Let G be a locally compact Hausdorff group. Let Y € G-L and X € G-P.
If Y € G-ANE(X), then Y € G-NSP(X).

Corollary 5.5. Let G be a compact group. Let L be a linear G-space. If L is a Banach
space, then L € G-SP(X) for every paracompact G-space X .

Corollary 5.6. Let G be a compact Lie group. Let L be a locally conver metrizable linear
G-space. If Y C L is any invariant convez subset, then Y € G-SP(X) for every metrizable
G-space X.
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