Cálculo diferencial e integral 4

Guía 2

1. Demuestra el caso del teorema de Fubini que no se demostró en clase. Concretamente: sea $R = A \times B \subset \mathbb{R}^n$ un rectángulo compacto con A y B rectángulos de dimensión menor. Supongamos que $f: R \to \mathbb{R}$ es integrable. Para cada $y \in B$, define $g_y: A \to \mathbb{R}$ por $g_y(x) = f(x, y)$. Demuestra que las funciones

$$\mathcal{L}(y) := \int_{A} g_y \quad \text{y} \quad \mathcal{U}(y) := \overline{\int}_{A} g_y$$

son integrables y además

$$\int_{R} f = \int_{A \times B} f = \int_{B} \mathcal{L} = \int_{B} \mathcal{U}.$$

2. **E** Supongamos que $A \subset \mathbb{R}^n$ y $B \subset \mathbb{R}^k$ son rectángulos compactos. Sea $C \subset A \times B$ un conjunto de contenido cero. Definamos $A' \subset A$ como el conjunto de todas las $x \in A$ tales que

$$\{y \in B \mid (x, y) \in C\}$$

no tiene contenido cero. Probar que A' es un conjunto de medida cero.

- 3. Sea $C \subset [0,1] \times [0,1]$ la unión de todos los $\{p/q\} \times [0,1/q]$ donde p/q es un número racional en [0,1] designado por su representante irreducible. Utilice C para demostrar que en el ejercicio anterior la palabra medida no puede ser sustituida por contenido.
- 4. Sea $f:[a,b]\to\mathbb{R}$ integrable y no negativa. Sea $A_f=\{(x,y)\mid a\leq x\leq b,\ 0\leq y\leq f(x)\}$. Demuestra que A_f es Jordan medible y que tiene área (medida de Jordan) $\int_a^b f$.
- 5. Si $f:[a,b]\times[a,b]\to\mathbb{R}$ es integrable, probar que

$$\int_{a}^{b} \int_{a}^{y} f(x,y) dx dy = \int_{a}^{b} \int_{x}^{b} f(x,y) dy dx.$$

6. a) Sea f continua en $[a, b] \times [c, d]$. Definamos para cada $(x, y) \in (a, b) \times (c, d)$, la función

$$F(x,y) = \int_{0}^{x} \int_{0}^{y} f(u,v)dvdu.$$

Demostrar que $\partial^2 F/\partial x \partial y = \partial^2 F/\partial y \partial x = f(x, y)$.

b) Utilizar el teorema de Fubini para demostrar que si f es de clase \mathbb{C}^2 , entonces

$$\partial^2 f/\partial x \partial y = \partial^2 f/\partial y \partial x.$$

7. Sean $A = [a_1, b_1] \times \cdots \times [a_n, b_n]$ y $f : A \to \mathbb{R}$ una función continua. Definamos $F : A \to \mathbb{R}$ por

1

$$F(x) = \int_{[a_1, x_1] \times \dots \times [a_n, x_n]} f, \qquad x = (x_1, \dots, x_n) \in A.$$

Si x es un punto en el interior de A ¿quién es $\partial F/\partial x_i$?

- 8. Sea $f:[a,b]\times[c,d]\to\mathbb{R}$ una función de clase C^1 . Definamos $F(y)=\int_a^b f(x,y)dx$. Demuestra la regla de Leibnitz: $F'(y)=\int_a^b \frac{\partial f}{\partial y}dx$.
- 9. **E** Sea $f:[a,b]\times[c,d]\to\mathbb{R}$ una función de clase C^1 . Definamos $F(x,y)=\int_a^x f(t,y)dt$.
 - a) Encuentra $\partial f/\partial x$ y $\partial f/\partial y$.
 - b) Si $G(x) = \int_a^{g(x)} f(t, x) dt$, encontrar G'(x).
- 10. Sean A y B dos subconjuntos de \mathbb{R}^3 Jordan medibles. Sea $A_c = \{(x,y) \mid (x,y,c) \in A\}$ y $B_c = \{(x,y) \mid (x,y,c) \in B\}$. Supongamos que cada A_c y cada B_c son Jordan medibles y tienen la misma área. Usa el principio de Cavalieri para demostrar que A y B tienen el mismo volumen
- 11. Calcula las siguienes integrales iteradas

$$\int_0^1 \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} dy dx, \qquad \int_0^1 \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} dx dy.$$

(sugerencia: haz un cambio de variable que involucre a la función tangente) ¿Contradice tu resultado al teorema de Fubini?

12. ESea $f:[0,1]\times[0,1]\to\mathbb{R}$ definida por

$$f(x,y) = \begin{cases} 1, & \text{si } x \in \mathbb{Q}, \\ 2y, & \text{si } x \notin \mathbb{Q}. \end{cases}$$

Demostrar que la integral iterada $\int_0^1 \int_0^1 f(x,y) dy dx$ existe pero que f no es integrable.

13. Sea f continua en [a, b] y g continua en [c, d]. Demostrar que

$$\int_{[a,b]\times[c,d]} f(x)g(y) = \left(\int_a^b f(x)dx\right) \left(\int_c^d g(y)dy\right).$$

14. Sean $g_1, g_2 : \mathbb{R}^2 \to \mathbb{R}$ dos funciones de clase C^1 . Supongamos que $\partial g_1/\partial y = \partial g_2/\partial x$. Definamos la función $f : \mathbb{R}^2 \to \mathbb{R}$ dada por

$$f(x,y) = \int_0^x g_1(t,0)dt + \int_0^y g_2(x,t)dt.$$

- a) Demuestra que $\partial f/\partial y = g_2(x,y)$.
- b) Demuestra que $\partial f/\partial x = g_1(x,y)$.
- 15. **E** Calcular el volumen del sólido acotado por el plano xz, el plano yz, el plano xy, los planos x=1, y=1 y la superficie $z=x^2+y^4$.
- 16. Calclular el volumen del sólido acotado por la gráfica $z=\sin y$, los planos $x=1,\ x=0,\ y=0,\ y=\pi/2$ y el plano xy.
- 17. Calcular las siguientes integrales iteradas y dibujar las regiones determinadas por sus límites.

- a) $\int_0^1 \int_0^{x^2} dy dx$.
- b) $\int_0^1 \int_1^{e^x} (x+y) dy dx$.
- c) $\int_{-3}^{2} \int_{0}^{y^{2}} (x^{2} + y) dx dy$.
- d) $\int_0^{\pi/2} \int_0^{\cos x} y \sin x dy dx$.
- 18. Sea D la región limitada por los semiejes positivos x e y y la recta 3x + 4y = 10. Calcular $\int_D x^2 + y^2$
- 19. Sea D la región acotada por el eje y y la parábola $x = -4y^2 + 3$. Calcular $\int_D x^3 y$.
- 20. Expresar mediante una integral, el volumen del cono cuya base tiene radio r y cuya altura es h.
- 21. Sea D la región formada por los puntos (x,y) tales que $-\phi(x) \le y \le \phi(x)$, donde ϕ es una función continua no negativa definida en el intervalo [a,b]. Sea $f:D\to\mathbb{R}$ tal que f(x,y)=-f(x,-y). Demuestra que $\int_D f=0$.
- 22. **E** Demostrar que el área del paralelogramo determinado por dos vectores planos (a_1, a_2) y (b_1, b_2) es $|a_1b_2 a_2b_1|$.
- 23. En las siguienes integrales cambiar el orden de integración, dibujar las correspondientes regiones y calcular las integrales de las dos maneras:
 - a) $\int_0^1 \int_x^1 xy dy dx$.
 - b) $\int_0^{\pi/2} \int_0^{\cos \theta} \cos \theta dr d\theta$.
 - c) $\int_0^1 \int_1^{2-y} (x+y)^2 dx dy$.
- 24. Determina cuál es la región de integración que conduce a cada una de las siguientes integrales múltiples y evalúalas.
 - a) $\mathbf{E} \int_0^2 \left(\int_0^z \left(\int_0^{\sqrt{z^2 y^2}} x dx \right) dy \right) dz.$
 - b) $\int_0^1 \left(\int_0^x \left(\int_{x^2 + y^2}^{x+y} dz \right) dy \right) dx.$
 - c) $\mathbf{E} \int_{-1}^{1} \left(\int_{-2|x|}^{|x|} e^{x+y} dy \right) dx$.
- 25. Sea $f:[0,a]\subset\mathbb{R}\to\mathbb{R}$.
 - a) Identifica la región que conduce a la siguiente integral iterada:

$$\int_0^a \left(\int_0^x \left(\int_0^y f(z) dz \right) dy \right) dx.$$

b) Usa el teorema de Fubini para probar la siguiente identidad:

$$\int_0^a \left(\int_0^x \left(\int_0^y f(z) dz \right) dy \right) dx = \frac{1}{2} \int_0^a f(z) (a-z)^2 dz.$$

3

26. Si $f(x,y) = e^{\sin(x+y)}$ y $D = [-\pi, \pi] \times [-\pi, \pi]$, probar que

$$\frac{1}{e} \le \frac{1}{a\pi^2} \int_D f \le e.$$

27. Demostrar que

$$\frac{1}{6} \le \int_D \frac{1}{y - x + 3} \le \frac{1}{4},$$

donde D es el triángulo con vértices (0,0), (1,1) y (1,0).

- 28. Calcular $\int_D e^{x-y}$ donde D es el triángulo con vértices (0,0), (1,3) y (2,2)
- 29. Encontrar el volumen del sólido limitado por $x^2 + 2y^2 = 2$, z = 0 y x + y + 2z = 2.
- 30. **E** Encontrar el volumen de la región que resulta de intersectar los dos cilindros $x^2 + y^2 \le a^2$ y $x^2 + z^2 \le a^2$.
- 31. Calcular cada una de las siguientes integrales:
 - a) $\int_W (x^2 + y^2 + z^2) dx dy dz$, donde W es la región acotada por x + y + z = a (a > 0), x = 0, y = 0 y z = 0.
 - b) $\int_W z dx dy dz$, donde W es la región acotada por los planos $x=0,\,y=0,\,z=0,\,z=1$ y el cilindro $x^2+y^2=1$ con $x\geq 0,\,y\geq 0.$
 - c) $\int_W (x^2 + y^2) dx dy dz$, donde W es la pirámide con vértice superior (0,0,1) y cuyos vértices en la base son (0,0,0), (1,0,0), (0,1,0) y (1,1,0).
- 32. En cada inciso, encuentra la imagen bajo la transformación g de la región A e integra f sobre g(A).
 - a) $g(u,v) = (u^2 v^2, 2uv), A = \{(u,v) \in \mathbb{R}^2 \mid u,v \ge 0 \text{ y } u^2 + v^2 \le 1\}, \text{ y } f(x,y) = \frac{1}{1+\sqrt{x^2+y^2}}.$
 - b) $g(u,v) = (u,v(1+u^2)), A = [0,3] \times [0,2] y f(x,y) = x.$
- 33. Sea $D^* = [0,1] \times [0,1]$ y defínase T en D^* mediante $T(u,v) = (-u^2 + 4u,v)$. Hallar $D = T(D^*)$ ¿Es T inyectiva?
- 34. **E** Sea D^* el paralelogramo limitado por las rectas y = 3x + 4, y = 3x, $y = \frac{1}{2}x$, $y = \frac{1}{2}(x + 4)$. Sea $D = [0, 1] \times [0, 1]$. Hallar una aplicación T tal que $D = T(D^*)$.
- 35. Sea D^* el paralelogramo con vértices en (-1,3), (0,0), (2,-1) y (1,2) y sea $D=[0,1]\times[0,1]$. Hallar una función T tal que $T(D^*)=D$.
- 36. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ el cambio a coordenadas esféricas definido por $(\rho, \phi, \theta) \to (x, y, z)$, donde

$$x = \rho \operatorname{sen} \phi \cos \theta, \quad y = \rho \operatorname{sen} \phi \operatorname{sen} \theta, \quad z = \rho \cos \phi.$$

Sea $D^* = \{(\rho, \phi, \theta) \mid \rho \in [0, 1], \ \phi \in [0, \pi], \theta \in [0, 2\pi]\}$. Hallar $D = T(D^*)$ ¿Es T inyectiva? Si no lo es, ¿se puede quitar un subconjunto a D^* de forma que en lo que quede T sea inyectiva?

- 37. En cada inciso haz un dibujo de la región dada y calcula su área.
 - a) La región acotada por las curvas cuyas ecuaciones polares son $\theta = 0$, $\theta = \pi/4$ y $r = \theta^2$.

- b) La región que está dentro de la curva $r = 1 + \cos(\theta)$ y fuera de la curva r = 1.
- c) **E** La región que está dentro de la curva $r = 3 \operatorname{sen}(\theta)$ y fuera de la curva $r = 1 + \operatorname{sen}(\theta)$.
- 38. Hallar la media de $f(x,y) = e^{x+y}$ sobre el triángulo con vértices (0,0), (0,1) y (1,0).
- 39. Hallar el centro de masa de la región entre $y = x^2$ e y = x si la densidad es x + y.
- 40. Hallar el centro de masa de la región entre y=0 e $y=x^2$, donde $0 \le x \le 1/2$.
- 41. Una placa de oro está definida por $0 \le x \le 2\pi$ y $0 \le y \le \pi$ (centímetros) y tiene una densidad de masa $\delta(x,y) = y^2 \operatorname{sen}^2(4x) + 2$ (gramos por centímetro cuadrado). Si el oro se vende a 7 euros por gramo, ¿Cuánto vale el oro de la placa?
- 42. Hallar el centro de masa del cilindro $x^2 + y^2 \le 1$, $1 \le z \le 2$, si la densidad es $(x^2 + y^2)z^2$.
- 43. \mathbf{E} Sea A la región determinada por la circunferencia de radio 1 y centro en (0,1). Supongamos que A es una placa metálica cuya densidad de masa ρ está dada por

$$\rho(x,y) = \begin{cases} x^2 + y^2 & \text{si } x \in [-1,0], \\ y^2 & \text{si } x \in [0,1]. \end{cases}$$

Calcula la masa total de A y el centro de masa de A.

- 44. Hallar el valor medio de e^{-z} sobre la bola $x^2 + y^2 + z^2 \le 1$.
- 45. Sea $D = \{(x,y)|x^2 + y^2 \le 1\}$. Calcula $\int_D e^{x^2 + y^2} dx dy$.
- 46. Sea D la región $0 \le y \le x$ y $0 \le x \le 1$. Calcular $\int_D (x+y) dx dy$, por medio del cambio de variables x = u + v, y = u v. Comprobar el resultado por medio del cálculo directo de la integral.
- 47. Sea T(u,v)=(x(u,v),y(u,v)) la aplicación definida por T(u,v)=(4u,2u+3v). Sea D^* el rectángulo $[0,1]\times[1,2]$. Hallar $D=T(D^*)$ y calcular las integrales

$$\int_{D} xydxdy, \quad \int_{D} (x-y)dxdy,$$

por medio de un cambio de variables que las calcule sobre D^* .

48. Calcular

$$\int_{D} \frac{dxdy}{\sqrt{1+x+2y}},$$

donde $D = [0, 1] \times [0, 1]$, haciendo el cambio de variables T(u, v) = (u, v/2).

- 49. Definir $T(u,v)=(u^2-v^2,2uv)$. Sea D^* el conjunto de los puntos (u,v) con $u^2+v^2\leq 1,\ u\geq 0,\ v\geq 0$. Hallar $D=T(D^*)$ y calcular el área de D.
- 50. **E** Calcular $\int_R \frac{dxdy}{x+y}$, donde R es la región acotada por x=0, y=0, x+y=1, x+y=4, por medio de la aplicación T(u,v)=(u-uv,uv).
- 51. Integrar $x^2 + y^2 + z^2$ sobre el cilindro $x^2 + y^2 \le 2, -2 \le z \le 3$.

- 52. Sea \mathbb{B}^3 la bola cerrada unitaria de \mathbb{R}^3 . Calcular $\int_{\mathbb{B}^3} \frac{dxdydz}{\sqrt{2+x^2+y^2+z^2}}$.
- 53. Integrar $\sqrt{x^2+y^2+z^2}$ sobre la región acotada por las esferas $x^2+y^2+z^2=a^2$ y $x^2+y^2+z^2=b^2$, donde 0 < b < a.
- 54. $\mathbf E$ Calcular $\int_B z dx dy dz$, donde B es la región dentro del cilindro $x^2+y^2=1$ por encima del plano xy y por debajo del cono $z=\sqrt{x^2+y^2}$.